Using cross-product matrices to compute the SVD

被引:0
|
作者
Zhongxiao Jia
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Numerical Algorithms | 2006年 / 42卷
关键词
cross-product matrix; eigenvalue; eigenvector; finite precision arithmetic; Rayleigh quotient; singular value; singular vector; SVD; 65F15; 65F30; 65G05; 15A12; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns accurate computation of the singular value decomposition (SVD) of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m\times n$\end{document} matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}. As is well known, cross-product matrix based SVD algorithms compute large singular values accurately but generally deliver poor small singular values. A new novel cross-product matrix based SVD method is proposed: (a) Use a backward stable algorithm to compute the eigenpairs of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{\rm T}A$\end{document} and take the square roots of the large eigenvalues of it as the large singular values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document} ; (b) form the Rayleigh quotient of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{\rm T}A$\end{document} with respect to the matrix consisting of the computed eigenvectors associated with the computed small eigenvalues of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{\rm T}A$\end{document} ; (c) compute the eigenvalues of the Rayleigh quotient and take the square roots of them as the small singular values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A$\end{document}. A detailed quantitative error analysis is conducted on the method. It is proved that if small singular values are well separated from the large ones then the method can compute the small ones accurately up to the order of the unit roundoff \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon$\end{document}. An algorithm is developed that is not only cheaper than the standard Golub–Reinsch and Chan SVD algorithms but also can update or downdate a new SVD by adding or deleting a row and compute certain refined Ritz vectors for large matrix eigenproblems at very low cost. Several variants of the algorithm are proposed that compute some or all parts of the SVD. Typical numerical examples confirm the high accuracy of our algorithm.
引用
收藏
页码:31 / 61
页数:30
相关论文
共 50 条
  • [1] Using cross-product matrices to compute the SVD
    Jia, Zhongxiao
    [J]. NUMERICAL ALGORITHMS, 2006, 42 (01) : 31 - 61
  • [2] Using semiseparable matrices to compute the SVD of a general matrix product/quotient
    Van Barel, Marc
    Vanberghen, Yvette
    Van Dooren, Paul
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (11) : 3175 - 3180
  • [3] A cross-product approach for low-rank approximations of large matrices
    Dax, Achiya
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [4] PRE-POSTERIOR DISTRIBUTION OF INVERSE OF A SUM OF 2 CROSS-PRODUCT MATRICES
    SINGH, B
    SEDRANSK, J
    [J]. BIOMETRIKA, 1977, 64 (03) : 649 - 651
  • [5] Diagonalization of the cross-product matrix
    Baksalary, Oskar Maria
    Trenkler, Goetz
    [J]. EXAMPLES AND COUNTEREXAMPLES, 2023, 4
  • [6] Automatic boosting of cross-product coverage using Bayesian networks
    Baras D.
    Fine S.
    Fournier L.
    Geiger D.
    Ziv A.
    [J]. International Journal on Software Tools for Technology Transfer, 2011, 13 (3) : 247 - 261
  • [7] Automatic Boosting of Cross-Product Coverage Using Bayesian Networks
    Baras, Dorit
    Fournier, Laurent
    Ziv, Avi
    [J]. HARDWARE AND SOFTWARE: VERIFICATION AND TESTING, PROCEEDINGS, 2009, 5394 : 53 - 67
  • [8] STARLIKENESS OF A CROSS-PRODUCT OF BESSEL FUNCTIONS
    Al-Kharsani, Huda A.
    Baricz, Arpad
    Pogany, Tibor K.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 819 - 827
  • [9] ON ZEROS OF CROSS-PRODUCT BESSEL FUNCTIONS
    MARTINEK, J
    THIELMAN, HP
    HUEBSCHM.EC
    [J]. JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 16 (05): : 447 - &
  • [10] Cross-product extensions of the Gene Ontology
    Mungall, Christopher J.
    Bada, Michael
    Berardini, Tanya Z.
    Deegan, Jennifer
    Ireland, Amelia
    Harris, Midori A.
    Hill, David P.
    Lomax, Jane
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2011, 44 (01) : 80 - 86