Renormalization Regularization and Renormalons;
Scattering Amplitudes;
Quantum Groups;
Differential and Algebraic Geometry;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We give a Hopf-algebraic formulation of the R∗-operation, which is a canonical way to render UV and IR divergent Euclidean Feynman diagrams finite. Our analysis uncovers a close connection to Brown’s Hopf algebra of motic graphs. Using this connection we are able to provide a verbose proof of the long observed ‘commutativity’ of UV and IR subtractions. We also give a new duality between UV and IR counterterms, which, entirely algebraic in nature, is formulated as an inverse relation on the group of characters of the Hopf algebra of log-divergent scaleless Feynman graphs. Many explicit examples of calculations with applications to infrared rearrangement are given.
机构:
UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT MATH,MEXICO CITY 09340,DF,MEXICOUNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT MATH,MEXICO CITY 09340,DF,MEXICO
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Wei, Xiaomin
Jiang, Lining
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Jiang, Lining
Xin, Qiaoling
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China