Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells

被引:0
|
作者
Enbing Bi
Han Chen
Fengxian Xie
Yongzhen Wu
Wei Chen
Yanjie Su
Ashraful Islam
Michael Grätzel
Xudong Yang
Liyuan Han
机构
[1] State Key Laboratory of Metal Matrix Composites,Department of Micro/Nano Electronics
[2] School of Materials Science and Engineering,undefined
[3] Shanghai Jiao Tong University,undefined
[4] Photovoltaic Materials Unit,undefined
[5] National Institute for Materials Science,undefined
[6] Key Laboratory for Thin Film and Microfabrication of the Ministry of Education,undefined
[7] School of Electronics,undefined
[8] Information and Electrical Engineering,undefined
[9] Shanghai Jiao Tong University,undefined
[10] Laboratory of Photonics and Interfaces (LPI),undefined
[11] Station 6,undefined
[12] Institute of Chemical Science and Engineering,undefined
[13] Faculty of Basic Science,undefined
[14] Ecole Polytechnique Federale de Lausanne,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
引用
收藏
相关论文
共 50 条
  • [1] Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
    Bi, Enbing
    Chen, Han
    Xie, Fengxian
    Wu, Yongzhen
    Chen, Wei
    Su, Yanjie
    Islam, Ashraful
    Gratzel, Michael
    Yang, Xudong
    Han, Liyuan
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Precursor engineering for efficient and stable perovskite solar cells
    Luan, Fuyuan
    Li, Haiyan
    Gong, Shuiping
    Chen, Xinyu
    Shou, Chunhui
    Wu, Zihua
    Xie, Huaqing
    Yang, Songwang
    [J]. NANOTECHNOLOGY, 2023, 34 (05)
  • [3] Facet Engineering for Stable, Efficient Perovskite Solar Cells
    Ma, Chunqing
    Gratzel, Michael
    Park, Nam-Gyu
    [J]. ACS ENERGY LETTERS, 2022, 7 (09) : 3120 - 3128
  • [4] Additive Engineering for Efficient and Stable Perovskite Solar Cells
    Zhang, Fei
    Zhu, Kai
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (13)
  • [5] Hetero-perovskite engineering for stable and efficient perovskite solar cells
    Cheng, Xiaohua
    Han, Ying
    Cui, Bin-Bin
    [J]. SUSTAINABLE ENERGY & FUELS, 2022, 6 (14) : 3304 - 3323
  • [6] Dimensional Engineering in Efficient and Stable Inverted Perovskite Solar Cells
    Zhu, Qing
    Yu, Yue
    Liu, Xinxing
    He, Dongmei
    Shai, Xuxia
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    [J]. SOLAR RRL, 2024, 8 (17):
  • [7] Additive engineering for highly efficient and stable perovskite solar cells
    Lee, Do-Kyoung
    Park, Nam-Gyu
    [J]. APPLIED PHYSICS REVIEWS, 2023, 10 (01)
  • [8] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    [J]. ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [9] Perovskite Nanocomposite Layers Engineering for Efficient and Stable Solar Cells
    Bkkar, Muhammad Ahmad
    Olekhnovich, Roman Olegovich
    Uspenskaya, Mayya Valerievna
    [J]. JOURNAL OF NANO RESEARCH, 2022, 71 : 71 - 109
  • [10] Incorporating of Lanthanides Ions into Perovskite Film for Efficient and Stable Perovskite Solar Cells
    Song, Zonglong
    Xu, Wen
    Wu, Yanjie
    Liu, Shuainan
    Bi, Wenbo
    Chen, Xinfu
    Song, Hongwei
    [J]. SMALL, 2020, 16 (40)