Families of Spectral Sets for Bernoulli Convolutions

被引:0
|
作者
Palle E. T. Jorgensen
Keri A. Kornelson
Karen L. Shuman
机构
[1] University of Iowa,Department of Mathematics
[2] University of Oklahoma,Department of Mathematics
[3] Grinnell College,Department of Mathematics & Statistics
关键词
Bernoulli convolution; Spectral measure; Hilbert space; Fractals; Fourier series; Fourier coefficients; Orthogonal series; Iterated function system; 28A80; 42A16; 42C25; 46E30; 42B05; 28D05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the harmonic analysis of Bernoulli measures μλ, a one-parameter family of compactly supported Borel probability measures on the real line. The parameter λ is a fixed number in the open interval (0,1). The measures μλ may be understood in any one of the following three equivalent ways: as infinite convolution measures of a two-point probability distribution; as the distribution of a random power series; or as an iterated function system (IFS) equilibrium measure determined by the two transformations λ(x±1). For a given λ, we consider the harmonic analysis in the sense of Fourier series in the Hilbert space L2(μλ). For L2(μλ) to have infinite families of orthogonal complex exponential functions e2πis(⋅), it is known that λ must be a rational number of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{m}{2n}$\end{document}, where m is odd. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mu_{\frac{1}{2n}})$\end{document} has a variety of Fourier bases; i.e. orthonormal bases of exponential functions. For some other rational values of λ, we exhibit maximal Fourier families that are not orthonormal bases.
引用
收藏
页码:431 / 456
页数:25
相关论文
共 50 条
  • [1] Families of Spectral Sets for Bernoulli Convolutions
    Jorgensen, Palle E. T.
    Kornelson, Keri A.
    Shuman, Karen L.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 431 - 456
  • [2] Spectral property of the Bernoulli convolutions
    Hu, Tian-You
    Lau, Ka-Sing
    ADVANCES IN MATHEMATICS, 2008, 219 (02) : 554 - 567
  • [3] Spectra of Bernoulli convolutions and random convolutions
    Fu, Yan-Song
    He, Xing-Gang
    Wen, Zhi-Xiong
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 105 - 131
  • [4] On symmetric Bernoulli convolutions
    Kawata, T
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 792 - 794
  • [5] Notes on Bernoulli convolutions
    Solomyak, B
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 207 - 230
  • [6] ON THE DIMENSION OF BERNOULLI CONVOLUTIONS
    Breuillard, Emmanuel
    Varju, Peter P.
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2582 - 2617
  • [7] On symmetric Bernoulli convolutions
    Kershner, R
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 541 - 548
  • [8] On random Bernoulli convolutions
    Persson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 203 - 213
  • [9] On the Hausdorff Dimension of Bernoulli Convolutions
    Akiyama, Shigeki
    Feng, De-Jun
    Kempton, Tom
    Persson, Tomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (19) : 6569 - 6595
  • [10] Spectrality of infinite Bernoulli convolutions
    An, Li-Xiang
    He, Xing-Gang
    Li, Hai-Xiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) : 1571 - 1590