Contingency-constrained unit commitment with post-contingency corrective recourse

被引:0
|
作者
Richard Li-Yang Chen
Neng Fan
Ali Pinar
Jean-Paul Watson
机构
[1] Sandia National Laboratories,Quantitative Modeling and Analysis
[2] University of Arizona,Department of Systems and Industrial Engineering
[3] Sandia National Laboratories,Analytics Department
来源
关键词
Integer programming; Bi-level programming; Benders decomposition; Unit commitment; Contingency constraints;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of minimizing costs in the generation unit commitment problem, a cornerstone in electric power system operations, while enforcing an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}–k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}–ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\varepsilon }$$\end{document} reliability criterion. This reliability criterion is a generalization of the well-known N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}–k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} criterion and dictates that at least (1-εj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\varepsilon _j)$$\end{document} fraction of the total system demand (for j=1,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j = 1,\ldots , k$$\end{document}) must be met following the failure of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} or fewer system components. We refer to this problem as the contingency-constrained unit commitment problem, or CCUC. We present a mixed-integer programming formulation of the CCUC that accounts for both transmission and generation element failures. We propose novel cutting plane algorithms that avoid the need to explicitly consider an exponential number of contingencies. Computational studies are performed on several IEEE test systems and a simplified model of the Western US interconnection network. These studies demonstrate the effectiveness of our proposed methods relative to current state-of-the-art.
引用
收藏
页码:381 / 407
页数:26
相关论文
共 50 条
  • [1] Contingency-constrained unit commitment with post-contingency corrective recourse
    Chen, Richard Li-Yang
    Fan, Neng
    Pinar, Ali
    Watson, Jean-Paul
    [J]. ANNALS OF OPERATIONS RESEARCH, 2017, 249 (1-2) : 381 - 407
  • [2] Day-Ahead Contingency-Constrained Unit Commitment With Co-Optimized Post-Contingency Transmission Switching
    Saavedra, Raphael
    Street, Alexandre
    Arroyo, Jose M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (06) : 4408 - 4420
  • [3] Distributionally Robust Contingency-Constrained Unit Commitment
    Zhao, Chaoyue
    Jiang, Ruiwei
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (01) : 94 - 102
  • [4] Contingency-Constrained Unit Commitment in Meshed Isolated Power Systems
    Sokoler, Leo Emil
    Vinter, Peter
    Brentsen, Runi
    Edlund, Kristian
    Jorgensen, John Bagterp
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) : 3516 - 3526
  • [5] N-1-1 contingency-constrained unit commitment with renewable integration and corrective actions
    Zuniga Vazquez, Daniel A.
    Ruiz Duarte, Jose L.
    Fan, Neng
    Qiu, Feng
    [J]. ANNALS OF OPERATIONS RESEARCH, 2022, 316 (01) : 493 - 511
  • [6] N-1-1 contingency-constrained unit commitment with renewable integration and corrective actions
    Daniel A. Zuniga Vazquez
    Jose L. Ruiz Duarte
    Neng Fan
    Feng Qiu
    [J]. Annals of Operations Research, 2022, 316 : 493 - 511
  • [7] Contingency-Constrained Unit Commitment With Intervening Time for System Adjustments
    Guo, Zhaomiao
    Chen, Richard Li-Yang
    Fan, Neng
    Watson, Jean-Paul
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 3049 - 3059
  • [8] A robust contingency-constrained unit commitment with an N - αk security criterion
    Jeong, Jaehee
    Park, Sungsoo
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 123 (123)
  • [9] SECURITY-CONSTRAINED OPTIMAL POWER FLOW WITH POST-CONTINGENCY CORRECTIVE RESCHEDULING
    MONTICELLI, A
    PEREIRA, MVF
    GRANVILLE, S
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1987, 2 (01) : 175 - 182
  • [10] Transmission Contingency-Constrained Unit Commitment With High Penetration of Renewables via Interval Optimization
    Yu, Yaowen
    Luh, Peter B.
    Litvinov, Eugene
    Zheng, Tongxin
    Zhao, Jinye
    Zhao, Feng
    Schiro, Dane A.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (02) : 1410 - 1421