Arithmetic height functions over finitely generated fields

被引:0
|
作者
Atsushi Moriwaki
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Kyoto University,undefined
[4] Kyoto,undefined
[5] 606-8502,undefined
[6] Japan¶(e-mail: moriwaki@kusm.kyoto-u.ac.jp),undefined
来源
Inventiones mathematicae | 2000年 / 140卷
关键词
Mathematics Subject Classification (1991): 11G35, 14G25, 14G40, 11G10, 14K15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new height function for a variety defined over a finitely generated field over ℚ. For this height function, we prove Northcott’s theorem and Bogomolov’s conjecture, so that we can recover the original Raynaud’s theorem (Manin-Mumford’s conjecture).
引用
收藏
页码:101 / 142
页数:41
相关论文
共 50 条