q-concavity and related properties on symmetric sequence spaces

被引:0
|
作者
O. Blasco
T. Signes
机构
[1] Universidad de Valencia,Departamento de Análisis Matemático
[2] Universidad Complutense de Madrid,Departamento de Análisis Matemático
来源
Positivity | 2002年 / 6卷
关键词
Fourier Analysis; Operator Theory; Related Property; Sequence Space; Potential Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new property between the q-concavity and the lower q-estimate of a Banach lattice and we get a general method to construct maximal symmetric sequence spaces that satisfies this new property but fails to be q-concave. In particular this gives examples of spaces with the Orlicz property but without cotype 2.
引用
收藏
页码:381 / 391
页数:10
相关论文
共 50 条
  • [1] q-concavity and related properties on symmetric sequence spaces
    Blasco, O
    Signes, T
    POSITIVITY, 2002, 6 (04) : 381 - 391
  • [2] q-concavity and q-orlicz property on symmetric sequence spaces
    Blasco, O
    Signes, T
    TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (02): : 331 - 352
  • [3] The q-concavity constants of Lorentz sequence spaces and related inequalities
    Jameson, GJO
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) : 129 - 142
  • [4] On p-Convexity and q-Concavity in Non-Commutative Symmetric Spaces
    Dodds, P. G.
    Dodds, T. K.
    Sukochev, F. A.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (01) : 91 - 114
  • [5] On p-Convexity and q-Concavity in Non-Commutative Symmetric Spaces
    P. G. Dodds
    T. K. Dodds
    F. A. Sukochev
    Integral Equations and Operator Theory, 2014, 78 : 91 - 114
  • [6] Weak q-concavity conditions for CR manifolds
    Mauro Nacinovich
    Egmont Porten
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1779 - 1817
  • [7] Weak q-concavity conditions for CR manifolds
    Nacinovich, Mauro
    Porten, Egmont
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (05) : 1779 - 1817
  • [8] q-completeness and q-concavity of the union of open subspaces
    Vajaitu, V
    MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (02) : 217 - 229
  • [9] Local Q-concavity histograms for binary image classification and reconstruction
    Judit Szűcs
    Péter Balázs
    The Visual Computer, 2022, 38 : 4221 - 4234
  • [10] Local Q-concavity histograms for binary image classification and reconstruction
    Szucs, Judit
    Balazs, Peter
    VISUAL COMPUTER, 2022, 38 (12): : 4221 - 4234