Online health estimation strategy with transfer learning for operating lithium-ion batteries

被引:0
|
作者
Fang Yao
Defang Meng
Youxi Wu
Yakun Wan
Fei Ding
机构
[1] Hebei University of Technology,State Key Laboratory of Reliability and Intelligence of Electrical Equipment
[2] Hebei University of Technology,School of Artificial Intelligence
[3] Fengfan Co.,undefined
[4] Ltd.,undefined
来源
关键词
Lithium-ion battery; State of health; Operation conditions; Multi-domain transfer learning;
D O I
暂无
中图分类号
学科分类号
摘要
Complex power supply operation conditions complicate the degradation process of lithium batteries, which makes the charge–discharge cycle incomplete and the maximum available capacity not easily accessible. Besides, data-driven methods suffer from limited adaptation and possible overfitting. This paper proposes an online health estimation strategy with transfer learning for estimating the state of health (SOH) of batteries under varying charge–discharge depths and current rates. It aims to alleviate the difficulty in estimating SOH for operating batteries, and broaden the application range of the training model. The core of this strategy is a two-domain transfer CNN-LSTM model that estimates targets by transferring the battery degradation trends of multiple constant conditions. First, health indicators (HIs) with relatively high correlations and wide application ranges are extracted from the voltage and current data of the daily charge process. Then HI-based source domain selection criteria are designed. Since the battery experiences full and incomplete-discharged cases leading to various aging rates, a two-domain transfer CNN-LSTM model is designed. Each subnet includes a CNN and an LSTM to accomplish feature adaptation and time series forecasting. The weights of the sub-nets are updated online to track the drift of the time series covariates. Finally, the proposed strategy is verified on target batteries with varying cut-off voltages and currents, which demonstrates notable accuracy and reliability.
引用
收藏
页码:993 / 1003
页数:10
相关论文
共 50 条
  • [1] Online health estimation strategy with transfer learning for operating lithium-ion batteries
    Yao, Fang
    Meng, Defang
    Wu, Youxi
    Wan, Yakun
    Ding, Fei
    JOURNAL OF POWER ELECTRONICS, 2023, 23 (06) : 993 - 1003
  • [2] State of health estimation of lithium-ion batteries using EIS measurement and transfer learning
    Li, Yichun
    Maleki, Mina
    Banitaan, Shadi
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [3] A deep learning method for online capacity estimation of lithium-ion batteries
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Chen, Xiangyi
    Hong, Mingyi
    Hu, Chao
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [4] Online estimation of lithium-ion batteries state of health during discharge
    Liu, Fang
    Liu, Yan-peng
    Su, Wei-xing
    Jiao, Chang-ping
    Liu, Yang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (07) : 10112 - 10128
  • [5] Adversarial training defense strategy for lithium-ion batteries state of health estimation with deep learning
    Zheng, Kun
    Li, Yijing
    Yang, Zhipeng
    Zhou, Feifan
    Yang, Kun
    Song, Zhengxiang
    Meng, Jinhao
    ENERGY, 2025, 317
  • [6] A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries
    Ma, Guijun
    Xu, Songpei
    Yang, Tao
    Du, Zhenbang
    Zhu, Limin
    Ding, Han
    Yuan, Ye
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 759 - 769
  • [7] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [8] Online Estimation of Lithium-Ion Battery Capacity Using Transfer Learning
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Hu, Chao
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2019,
  • [9] An Enhanced Online Temperature Estimation for Lithium-Ion Batteries
    Xie, Yi
    Li, Wei
    Hu, Xiaosong
    Lin, Xianke
    Zhang, Yangjun
    Dan, Dan
    Feng, Fei
    Liu, Bo
    Li, Kexin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2020, 6 (02): : 375 - 390
  • [10] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671