On AB Bond Percolation on the Square Lattice and AB Site Percolation on Its Line Graph

被引:0
|
作者
Xian-Yuan Wu
S. Yu. Popov
机构
[1] Capital Normal University,Department of Mathematics
[2] Universidade de São Paulo,Departamento de Estatística, Instituto de Matemática e Estatística
来源
关键词
half close-packed graph of ; AB percolation; stochastic domination; randomly oriented lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that AB site percolation occurs on the line graph of the square lattice when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p \in (1 - \sqrt {1 - p_c } ,\sqrt {1 - p_c } )$$ \end{document}, where pc is the critical probability for site percolation in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}^2$$ \end{document}. Also, we prove that AB bond percolation does not occur on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}^2$$ \end{document} for p = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document}.
引用
收藏
页码:443 / 449
页数:6
相关论文
共 50 条
  • [1] On AB bond percolation on the square lattice and AB site percolation on its line graph
    Wu, XY
    Popov, SY
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (1-2) : 443 - 449
  • [2] Dimer site-bond percolation on a square lattice
    M. Dolz
    F. Nieto
    A. J. Ramirez-Pastor
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 43 : 363 - 368
  • [3] CORRELATED SITE-BOND PERCOLATION ON A SQUARE LATTICE
    VIDALES, AM
    FACCIO, RJ
    RICCARDO, J
    MIRANDA, EN
    ZGRABLICH, G
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 218 (1-2) : 19 - 28
  • [4] Dimer site-bond percolation on a square lattice
    Dolz, M
    Nieto, F
    Ramirez-Pastor, AJ
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2005, 43 (03): : 363 - 368
  • [5] AB-PERCOLATION CONDUCTIVITY ON TRIANGULAR LATTICE
    TONCHEV, V
    BABALIEVSKI, F
    [J]. SOLID STATE COMMUNICATIONS, 1993, 87 (07) : 597 - 599
  • [6] BOND PERCOLATION ON THE SQUARE LATTICE - ANISOTROPIC SYSTEMS
    MCGURN, AR
    [J]. PHYSICA A, 1983, 119 (1-2): : 295 - 306
  • [7] Directed spiral site percolation on the square lattice
    Santra, SB
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2003, 33 (01): : 75 - 82
  • [8] Site Percolation on a Disordered Triangulation of the Square Lattice
    Rolla, Leonardo T.
    [J]. SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 228 - 240
  • [9] SITE PERCOLATION-THRESHOLD FOR SQUARE LATTICE
    GEBELE, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02): : L51 - L54
  • [10] Directed spiral site percolation on the square lattice
    S.B. Santra
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 33 : 75 - 82