Lower bounds for off-line range searching

被引:0
|
作者
B. Chazelle
机构
[1] Princeton University,Department of Computer Science
来源
关键词
Discrete Comput Geom; Incidence Matrix; Chinese Remainder Theorem; Weighted Point; Southwest Quadrant;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proves three lower bounds for variants of the following rangesearching problem: Given n weighted points inRd andn axis-parallel boxes, compute the sum of the weights within each box: (1) if both additions and subtractions are allowed, we prove that Ω(n log logn) is a lower bound on the number of arithmetic operations; (2) if subtractions are disallowed the lower bound becomes Ω(n(logn/loglogn)d-1), which is nearly optimal; (3) finally, for the case where boxes are replaced by simplices, we establish a quasi-optimal lower bound of Ω(n2-2/(d+1))/polylog(n).
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [1] Lower bounds for off-line range searching
    Chazelle, B
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 17 (01) : 53 - 65
  • [2] On counting pairs of intersecting segments and off-line triangle range searching
    Pellegrini, M
    [J]. ALGORITHMICA, 1997, 17 (04) : 380 - 398
  • [3] On counting pairs of intersecting segments and off-line triangle range searching
    M. Pellegrini
    [J]. Algorithmica, 1997, 17 : 380 - 398
  • [4] COMPUTER SEARCHING, ONLINE AND OFF-LINE
    HENRY, M
    [J]. AMERICAN JOURNAL OF OPTOMETRY AND PHYSIOLOGICAL OPTICS, 1976, 53 (09): : 558 - 558
  • [5] Tight Lower Bounds for Halfspace Range Searching
    Arya, Sunil
    Mount, David M.
    Xia, Jian
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (04) : 711 - 730
  • [6] Tight Lower Bounds for Halfspace Range Searching
    Arya, Sunil
    Mount, David M.
    Xia, Jian
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 29 - 37
  • [7] Tight Lower Bounds for Halfspace Range Searching
    Sunil Arya
    David M. Mount
    Jian Xia
    [J]. Discrete & Computational Geometry, 2012, 47 : 711 - 730
  • [8] Lower bounds in on-line geometric searching
    Schuierer, S
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (01): : 37 - 53
  • [9] Lower bounds in on-line geometric searching
    Schuierer, S
    [J]. FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 1997, 1279 : 429 - 440
  • [10] Lower Bounds for Semialgebraic Range Searching and Stabbing Problems
    Afshani, Peyman
    Cheng, Pingan
    [J]. JOURNAL OF THE ACM, 2023, 70 (02)