On the power sequence of a fuzzy interval matrix with max-min operation

被引:0
|
作者
Yan-Kuen Wu
Chia-Cheng Liu
Yung-Yih Lur
机构
[1] Vanung University,Department of Business Administration
[2] Vanung University,Department of Industrial Management
来源
Soft Computing | 2018年 / 22卷
关键词
Interval matrix; Max-min algebra; Convergence; Nilpotence;
D O I
暂无
中图分类号
学科分类号
摘要
An n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n $$\end{document} interval matrix A=[A̲,A¯]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}= [\underline{A},\overline{A}]$$\end{document} is called to be a fuzzy interval matrix if 0≤A̲ij≤A¯ij≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \underline{A}_{ij} \le \overline{A}_{ij}\le 1$$\end{document} for all 1≤i,j≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i, j \le n$$\end{document}. In this paper, we proposed the notion of max-min algebra of fuzzy interval matrices. We show that the max-min powers of a fuzzy interval matrix either converge or oscillate with a finite period. Conditions for limiting behavior of powers of a fuzzy interval matrix are established. Some properties of fuzzy interval matrices in max-min algebra are derived. Necessary and sufficient conditions for the powers of a fuzzy interval matrices in max-min algebra to be nilpotent are proposed as well.
引用
收藏
页码:1615 / 1622
页数:7
相关论文
共 50 条
  • [1] On the power sequence of a fuzzy interval matrix with max-min operation
    Wu, Yan-Kuen
    Liu, Chia-Cheng
    Lur, Yung-Yih
    SOFT COMPUTING, 2018, 22 (05) : 1615 - 1622
  • [2] On the power sequence of a fuzzy matrix with convex combination of max-product and max-min operations
    Liu, Chia-Cheng
    Wu, Yan-Kuen
    Lur, Yung-Yih
    Tsai, Chia-Lun
    FUZZY SETS AND SYSTEMS, 2016, 289 : 157 - 163
  • [3] Fuzzy relation matrix and fuzzy max-min operation for biomedical signal classification
    Seker, H
    Korurek, M
    PROCEEDINGS OF THE 1998 2ND INTERNATIONAL CONFERENCE BIOMEDICAL ENGINEERING DAYS, 1998, : 57 - 59
  • [4] On the solvability of interval max-min matrix equations
    Myskova, Helena
    Plavka, Jan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 : 85 - 96
  • [5] Generalized eigenproblem of interval max-min (fuzzy) matrices
    Plavka, Jan
    Gazda, Matej
    FUZZY SETS AND SYSTEMS, 2021, 410 (410) : 27 - 44
  • [6] Tolerance Solvability of Interval Max-min Matrix Equations
    Myskova, Helena
    37TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2019, 2019, : 127 - 132
  • [7] Weak Solvability of Interval Max-Min Matrix Equations
    Myskova, Helena
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 242 - 249
  • [8] Interval Max-min Matrix Equations with Bounded Solution
    Myskova, Helena
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 499 - 504
  • [9] MAX-MIN SOLUTIONS FOR FUZZY MULTIOBJECTIVE MATRIX GAMES
    SAKAWA, M
    NISHIZAKI, I
    FUZZY SETS AND SYSTEMS, 1994, 67 (01) : 53 - 69
  • [10] Interval eigenproblem in max-min algebra
    Gavalec, Martin
    Plavka, Jan
    Tomaskova, Hana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 440 : 24 - 33