Subharmonicity and a Version of Riesz Theorem on Harmonic Conjugates

被引:0
|
作者
Karen Avetisyan
机构
[1] Yerevan State University,Faculty of Mathematics and Mechanics
来源
关键词
Quaternionic analysis; monogenic function; subharmonic function; harmonic conjugates;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to prove a monogenic version of classical M. Riesz theorem on harmonic conjugates in the framework of quaternionic analysis in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{4}}$$\end{document}. Our proof is subharmonic and somewhat simpler than that for less general Riesz-Stein-Weiss systems of harmonic conjugate functions.
引用
收藏
页码:909 / 919
页数:10
相关论文
共 50 条
  • [1] Subharmonicity and a Version of Riesz Theorem on Harmonic Conjugates
    Avetisyan, Karen
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (04) : 909 - 919
  • [2] PLESSNERS THEOREM FOR RIESZ CONJUGATES
    PETERSON, GE
    WELLAND, GV
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) : 307 - 317
  • [3] A NONSTANDARD VERSION OF A RIESZ THEOREM
    BENELMAMOUNE, I
    BENOIT, E
    LOBRY, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (07): : 653 - 656
  • [4] A quantitative version of the Kolmogorov–Riesz theorem
    G. García
    Advances in Operator Theory, 2021, 6
  • [5] A nonlinear version of the Riesz's representation theorem
    Dellacherie, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1011 - 1014
  • [6] A quantitative version of the Kolmogorov-Riesz theorem
    Garcia, G.
    ADVANCES IN OPERATOR THEORY, 2021, 6 (01)
  • [7] A NONCOMMUTATIVE VERSION OF THE FEJER-RIESZ THEOREM
    Savchuk, Yurii
    Schmuedgen, Konrad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1243 - 1248
  • [8] On Riesz systems of harmonic conjugates in R3
    Morais, J.
    Avetisyan, K.
    Guerlebeck, K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (12) : 1598 - 1614
  • [9] On 3D Riesz systems of harmonic conjugates
    Avetisyan, K.
    Guerlebeck, K.
    Morais, J.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 441 - 445
  • [10] A CONVERSE OF THE RIESZ-DECOMPOSITION THEOREM FOR HARMONIC SPACES
    GOLDSTEIN, M
    OW, WH
    MATHEMATISCHE ZEITSCHRIFT, 1980, 173 (02) : 105 - 109