Quantization of Lie Bialgebras, Part VI: Quantization of Generalized Kac–Moody Algebras

被引:0
|
作者
Pavel Etingof
David Kazhdan
机构
[1] Department of Mathematics,Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram
[2] The Hebrew University of Jerusalem,undefined
来源
Transformation Groups | 2008年 / 13卷
关键词
Hopf Algebra; Braid Group; Verma Module; Tensor Category; Irreducible Module;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a continuation of the series of papers “Quantization of Lie bialgebras (QLB) I-V”. We show that the image of a Kac-Moody Lie bialgebra with the standard quasitriangular structure under the quantization functor defined in QLB-I,II is isomorphic to the Drinfeld-Jimbo quantization of this Lie bialgebra, with the standard quasitriangular structure. This implies that when the quantization parameter is formal, then the category O for the quantized Kac-Moody algebra is equivalent, as a braided tensor category, to the category O over the corresponding classical Kac-Moody algebra, with the tensor category structure defined by a Drinfeld associator. This equivalence is a generalization of the functor constructed previously by G. Lusztig and the second author. In particular, we answer positively a question of Drinfeld whether the characters of irreducible highest weight modules for quantized Kac-Moody algebras are the same as in the classical case. Moreover, our results are valid for the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}(A)$\end{document} corresponding to any symmetrizable matrix A (not necessarily with integer entries), which answers another question of Drinfeld. We also prove the Drinfeld-Kohno theorem for the algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}(A)$\end{document} (it was previously proved by Varchenko using integral formulas for solutions of the KZ equations).
引用
收藏
页码:527 / 539
页数:12
相关论文
共 50 条