Existence of shadow prices in finite probability spaces

被引:0
|
作者
Jan Kallsen
Johannes Muhle-Karbe
机构
[1] Christian-Albrechts-Universität zu Kiel,Mathematisches Seminar
[2] ETH Zürich,Departement Mathematik
关键词
Transactions costs; Portfolio optimization; Shadow price; 91B28; 91B16;
D O I
暂无
中图分类号
学科分类号
摘要
A shadow price is a process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{S}}$$\end{document} lying within the bid/ask prices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{S},\overline{S}}$$\end{document} of a market with proportional transaction costs, such that maximizing expected utility from consumption in the frictionless market with price process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{S}}$$\end{document} leads to the same maximal utility as in the original market with transaction costs. For finite probability spaces, this note provides an elementary proof for the existence of such a shadow price.
引用
收藏
页码:251 / 262
页数:11
相关论文
共 50 条
  • [1] Existence of shadow prices in finite probability spaces
    Kallsen, Jan
    Muhle-Karbe, Johannes
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2011, 73 (02) : 251 - 262
  • [2] On the existence of shadow prices
    Giuseppe Benedetti
    Luciano Campi
    Jan Kallsen
    Johannes Muhle-Karbe
    [J]. Finance and Stochastics, 2013, 17 : 801 - 818
  • [3] On the existence of shadow prices
    Benedetti, Giuseppe
    Campi, Luciano
    Kallsen, Jan
    Muhle-Karbe, Johannes
    [J]. FINANCE AND STOCHASTICS, 2013, 17 (04) : 801 - 818
  • [4] On the existence of shadow prices for optimal investment with random endowment
    Gu, Lingqi
    Lin, Yiqing
    Yang, Junjian
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 1082 - 1103
  • [5] On the probability that finite spaces with random distances are metric spaces
    Mascioni, V
    [J]. DISCRETE MATHEMATICS, 2005, 300 (1-3) : 129 - 138
  • [6] EXISTENCE OF INDEPENDENT COMPLEMENTS IN REGULAR CONDITIONAL PROBABILITY SPACES
    RAMACHANDRAN, D
    [J]. ANNALS OF PROBABILITY, 1979, 7 (03): : 433 - 443
  • [7] ON THE EXISTENCE OF PROBABILITY-MEASURES ON FUZZY MEASURABLE SPACES
    DVURECENSKIJ, A
    [J]. FUZZY SETS AND SYSTEMS, 1991, 43 (02) : 173 - 181
  • [8] A PROBABILITY MONAD AS THE COLIMIT OF SPACES OF FINITE SAMPLES
    Fritz, Tobias
    Perrone, Paolo
    [J]. THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 170 - 220
  • [9] CONDITIONAL PROBABILITY TABLE FOR FINITE SAMPLE SPACES
    BECHDOLT, BV
    [J]. AMERICAN ECONOMIST, 1972, 16 (02): : 151 - 156