Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams

被引:0
|
作者
Jiawei Han
Yixin Chen
Guozhu Dong
Jian Pei
Benjamin W. Wah
Jianyong Wang
Y. Dora Cai
机构
[1] University of Illinois,
[2] Washington University,undefined
[3] Wright State University,undefined
[4] Simon Fraser University,undefined
[5] Tsinghua University,undefined
来源
关键词
Stream Data; Data Cube; Critical Layer; Query Response Time; Effective Computation;
D O I
暂无
中图分类号
学科分类号
摘要
Real-time surveillance systems, telecommunication systems, and other dynamic environments often generate tremendous (potentially infinite) volume of stream data: the volume is too huge to be scanned multiple times. Much of such data resides at rather low level of abstraction, whereas most analysts are interested in relatively high-level dynamic changes (such as trends and outliers). To discover such high-level characteristics, one may need to perform on-line multi-level, multi-dimensional analytical processing of stream data. In this paper, we propose an architecture, called stream_cube, to facilitate on-line, multi-dimensional, multi-level analysis of stream data.
引用
收藏
页码:173 / 197
页数:24
相关论文
共 50 条
  • [1] Stream cube: An architecture for multi-dimensional analysis of data streams
    Han, JW
    Chen, YX
    Dong, GZ
    Pei, H
    Wah, BW
    Wang, JY
    Cai, YD
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2005, 18 (02) : 173 - 197
  • [2] An Interactive Interface for Multi-Dimensional Data Stream Analysis
    Marques, Nuno C.
    Santos, Hugo
    Silva, Bruno
    [J]. Proceedings 2016 20th International Conference Information Visualisation IV 2016, 2016, : 223 - 229
  • [3] A Multi-Dimensional Analysis and Data Cube for Unstructured Text and Social Media
    Lee, Suan
    Kim, Namsoo
    Kim, Jinho
    [J]. 2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 761 - 764
  • [4] In Pursuit of Outliers in Multi-dimensional Data Streams
    Sadik, Shiblee
    Gruenwald, Le
    Leal, Eleazar
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 512 - 521
  • [5] BBoxDB streams: scalable processing of multi-dimensional data streams
    Nidzwetzki, Jan Kristof
    Gueting, Ralf Hartmut
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2022, 40 (2-3) : 559 - 625
  • [6] BBoxDB streams: scalable processing of multi-dimensional data streams
    Jan Kristof Nidzwetzki
    Ralf Hartmut Güting
    [J]. Distributed and Parallel Databases, 2022, 40 : 559 - 625
  • [7] Online multi-dimensional regression analysis on concept-drifting data streams
    Nadungodage, Chandima Hewa
    Xia, Yuni
    Vaidya, Pranav S.
    Chen, Yu
    Lee, Jaehwan John
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2014, 6 (03) : 217 - 238
  • [8] Multi-dimensional uncertain data stream clustering algorithm
    Luo, Qinghua
    Peng, Yu
    Peng, Xiyuan
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (06): : 1330 - 1338
  • [9] Forecasting the Data Cube: A Model Configuration Advisor for Multi-Dimensional Data Sets
    Fischer, Ulrike
    Schildt, Christopher
    Hartmann, Claudio
    Lehner, Wolfgang
    [J]. 2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 853 - 864
  • [10] Mining multi-dimensional frequent patterns without data cube construction
    Li, Chuan
    Tang, Changjie
    Yu, Zhonghua
    Liu, Yintian
    Zhang, Tianqing
    Liu, Qihong
    Zhu, Mingfang
    Jiang, Yongguang
    [J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 251 - 260