Regular Legendrian knots and the HOMFLY polynomial of immersed plane curves

被引:0
|
作者
S. Chmutov
V. Goryunov
H. Murakami
机构
[1] Program Systems Institute,
[2] Pereslavl-Zalessky,undefined
[3] 152140 Russia (E-mail: chmutov@math.botik.yaroslavl.su) ,undefined
[4] Department of Mathematical Sciences,undefined
[5] Division of Pure Mathematics,undefined
[6] The University of Liverpool,undefined
[7] Liverpool L69 3BX,undefined
[8] UK (E-mail: goryunov@liv.ac.uk) ,undefined
[9] Department of Mathematics,undefined
[10] Osaka City University,undefined
[11] 3-138,undefined
[12] Sugimoto 3-chome,undefined
[13] Sumiyoshi-ku,undefined
[14] Osaka 558,undefined
[15] Japan ,undefined
来源
Mathematische Annalen | 2000年 / 317卷
关键词
Mathematics Subject Classification (1991): 57M25,53C15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every unframed knot type in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ST^*{\bf \mathrm{R}}^2$\end{document} has a representative obtained by the Legendrian lifting of an immersed plane curve. This gives a positive answer to the question asked by V.I.Arnold in [3]. The Legendrian lifting lowers the framed version of the HOMFLY polynomial [20] to generic plane curves. We prove that the induced polynomial invariant can be completely defined in terms of plane curves only. Moreover it is a genuine, not Laurent, polynomial in the framing variable. This provides an estimate on the Bennequin-Tabachnikov number of a Legendrian knot.
引用
收藏
页码:389 / 413
页数:24
相关论文
共 50 条