Dissipative chaotic quantum maps: Expectation values, correlation functions and the invariant state

被引:0
|
作者
D. Braun
机构
[1] FB7,
[2] Universität-GHS Essen,undefined
[3] 45117 Essen,undefined
[4] Germany,undefined
关键词
PACS. 03.65.Sq Semiclassical theories and applications - 05.45.Mt Semiclassical chaos (“quantum chaos");
D O I
暂无
中图分类号
学科分类号
摘要
I investigate the propagator of the Wigner function for a dissipative chaotic quantum map. I show that a small amount of dissipation reduces the propagator of sufficiently smooth Wigner functions to its classical counterpart, the Frobenius-Perron operator, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Several consequences arise: the Wigner transform of the invariant density matrix is a smeared out version of the classical strange attractor; time dependent expectation values and correlation functions of observables can be evaluated via hybrid quantum-classical formulae in which the quantum character enters only via the initial Wigner function. If a classical phase-space distribution is chosen for the latter or if the map is iterated sufficiently many times the formulae become entirely classical, and powerful classical trace formulae apply.
引用
收藏
页码:3 / 12
页数:9
相关论文
共 44 条