Upper and lower bounds of convergence rates for strong solutions of the generalized Newtonian fluids with non-standard growth conditions

被引:0
|
作者
Jae-Myoung Kim
Seungchan Ko
机构
[1] Andong National University,Department of Mathematics Education
[2] Sungkyunkwan University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Non-Newtonian fluid; Variable exponent; Electrorheological fluid; Optimal convergence rates; Upper and lower bounds; 76A05; 76D05; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the motion of an incompressible shear-thickening power-law-like non-Newtonian fluid in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} with a variable power-law index. This system of nonlinear partial differential equations arises in mathematical models of electrorheological fluids. The aim of this paper is to investigate the large-time behaviour of the difference u-u~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{u}}-\varvec{{\tilde{u}}}$$\end{document} where u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{u}}$$\end{document} is a strong solution of the given equations with the initial data u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{u}}_0$$\end{document} and u~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{{\tilde{u}}}$$\end{document} is the strong solution of the same equations with perturbed initial data u0+w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{u}}_0+{\varvec{w}}_0$$\end{document}. The initial perturbation w0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{w}}_0$$\end{document} is not required to be small, but is assumed to satisfy certain decay condition. In particular, we can show that (1+t)-γ2≲‖u~(t)-u(t)‖2≲(1+t)-γ2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}(1+t)^{-\frac{\gamma }{2}}\lesssim \Vert \varvec{{\tilde{u}}}(t)-{\varvec{u}}(t)\Vert _2\lesssim (1+t)^{-\frac{\gamma }{2}},\end{aligned}$$\end{document}for sufficiently large t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}, where γ∈(2,52)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (2,\frac{5}{2})$$\end{document}. The proof is based on the observation that the solution of the linear heat equation describes the asymptotic behaviour of the solutions of the electrorheological fluids well for sufficiently large time t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}, and the generalized Fourier splitting method with an iterative argument. Furthermore, it will also be discussed that the argument used in the present paper can improve the previous results for the generalized Newtonian fluids with a constant power-law index.
引用
收藏
相关论文
共 15 条