JIMWLK evolution, Lindblad equation and quantum-classical correspondence

被引:0
|
作者
Ming Li
Alex Kovner
机构
[1] University of Connecticut,Physics Department
关键词
Perturbative QCD; Resummation;
D O I
暂无
中图分类号
学科分类号
摘要
In the Color Glass Condensate (CGC) effective theory, the physics of valence gluons with large longitudinal momentum is reflected in the distribution of color charges in the transverse plane. Averaging over the valence degrees of freedom is effected by integrating over classical color charges with some quasi probability weight functional W [j] whose evolution with rapidity is governed by the JIMWLK equation. In this paper, we reformulate this setup in terms of effective quantum field theory on valence Hilbert space governed by the reduced density matrix ρ̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{\rho} $$\end{document} for hard gluons, which is obtained after properly integrating out the soft gluon “environment”. We show that the evolution of this density matrix with rapidity in the dense and dilute limits has the form of Lindblad equation. The quasi probability distribution (weight) functional W is directly related to the reduced density matrix ρ̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{\rho} $$\end{document} through the generalization of the Wigner-Weyl quantum-classical correspondence, which reformulates quantum dynamics on Hilbert space in terms of classical dynamics on the phase space. In the present case the phase space is non Abelian and is spanned by the components of transverse color charge density j. The same correspondence maps the Lindblad equation for ρ̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{\rho} $$\end{document} into the JIMWLK evolution equation for W .
引用
收藏
相关论文
共 50 条
  • [1] JIMWLK evolution, Lindblad equation and quantum-classical correspondence
    Li, Ming
    Kovner, Alex
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (05)
  • [2] Quantum-classical correspondence of the Dirac equation with a scalar-like potential
    Liang, Mai-Lin
    Shu, Shun-Lin
    Yuan, Bing
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2009, 72 (05): : 777 - 785
  • [3] Quantum-classical correspondence of the Dirac equation with a scalar-like potential
    Mai-Lin Liang
    Shun-Lin Shu
    Bing Yuan
    [J]. Pramana, 2009, 72 : 777 - 785
  • [4] Quantum-Classical Correspondence of Shortcuts to Adiabaticity
    Okuyama, Manaka
    Takahashi, Kazutaka
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (04)
  • [5] The Boltzmann distribution and the quantum-classical correspondence
    Alterman, Sam
    Choi, Jaeho
    Durst, Rebecca
    Fleming, Sarah M.
    Wootters, William K.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (34)
  • [6] Quantum-classical correspondence in integrable systems
    Zhao, Yiqiang
    Wu, Biao
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (09)
  • [7] Anomalous transport and quantum-classical correspondence
    Sundaram, B
    Zaslavsky, GM
    [J]. PHYSICAL REVIEW E, 1999, 59 (06): : 7231 - 7234
  • [8] Quantum-classical correspondence in integrable systems
    Yiqiang Zhao
    Biao Wu
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [9] Quantum-classical correspondence of the relativistic equations
    Liang, ML
    Sun, YJ
    [J]. ANNALS OF PHYSICS, 2004, 314 (01) : 1 - 9
  • [10] Quantum-classical correspondence for the inverted oscillator
    Mustapha Maamache
    Jeong Ryeol Choi
    [J]. Chinese Physics C., 2017, 41 (11) - 68