Computing Row and Column Counts for Sparse QR and LU Factorization

被引:0
|
作者
J. R. Gilbert
X. S. Li
E. G. Ng
B. W. Peyton
机构
[1] Xerox Palo Alto Research Center,National Energy Research Scientific Computing Division
[2] Lawrence Berkeley National Laboratory,Computer Science and Mathematics Division
[3] Oak Ridge National Laboratory,undefined
来源
BIT Numerical Mathematics | 2001年 / 41卷
关键词
Sparse ; and ; factorizations; column elimination tree; row and column counts; disjoint set union;
D O I
暂无
中图分类号
学科分类号
摘要
We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization.
引用
收藏
页码:693 / 710
页数:17
相关论文
共 50 条
  • [1] Computing row and column counts for sparse QR and LU factorization
    Gilbert, JR
    Li, XS
    Ng, EG
    Peyton, BW
    [J]. BIT, 2001, 41 (04): : 693 - 710
  • [2] AN EFFICIENT ALGORITHM TO COMPUTE ROW AND COLUMN COUNTS FOR SPARSE CHOLESKY FACTORIZATION
    GILBERT, JR
    NG, EG
    PEYTON, BW
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) : 1075 - 1091
  • [3] QR factorization for row or column symmetric matrix
    邹红星
    戴琼海
    李衍达
    王殿军
    [J]. ScienceinChina,Ser.A., 2003, Ser.A.2003 (01) - 90
  • [4] QR factorization for row or column symmetric matrix
    Zou, HX
    Wang, DJ
    Dai, QH
    Li, YD
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (01): : 83 - 90
  • [5] QR factorization for row or column symmetric matrix
    邹红星
    戴琼海
    李衍达
    王殿军
    [J]. Science China Mathematics, 2003, (01) : 83 - 90
  • [6] QR factorization for row or column symmetric matrix
    Hongxing Zou
    Dianjun Wang
    Qionghai Dai
    Yanda Li
    [J]. Science in China Series A: Mathematics, 2003, 46 : 83 - 90
  • [7] LOW RANK APPROXIMATION OF A SPARSE MATRIX BASED ON LU FACTORIZATION WITH COLUMN AND ROW TOURNAMENT PIVOTING
    Grigori, Laura
    Cayrols, Sebastien
    Demmel, James W.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : C181 - C209
  • [8] On the row merge tree for sparse LU factorization with partial pivoting
    L. Grigori
    M. Cosnard
    E.G. Ng
    [J]. BIT Numerical Mathematics, 2007, 47 : 45 - 76
  • [9] On the row merge tree for sparse LU factorization with partial pivoting
    Grigori, L.
    Cosnard, M.
    Ng, E. G.
    [J]. BIT NUMERICAL MATHEMATICS, 2007, 47 (01) : 45 - 76
  • [10] ON THE COMPLEXITY OF SPARSE QR AND LU FACTORIZATION OF FINITE-ELEMENT MATRICES
    GEORGE, A
    NG, E
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05): : 849 - 861