A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia

被引:0
|
作者
Balasundaram Kadirvelu
Constantinos Gavriel
Sathiji Nageshwaran
Jackson Ping Kei Chan
Suran Nethisinghe
Stavros Athanasopoulos
Valeria Ricotti
Thomas Voit
Paola Giunti
Richard Festenstein
A. Aldo Faisal
机构
[1] Imperial College London,Brain & Behaviour Lab, Department of Bioengineering
[2] Imperial College London,Brain & Behaviour Lab, Department of Computing
[3] Imperial College London,Epigenetic Mechanisms and Disease Group, Department of Brain Sciences
[4] UCL Great Ormond Street Institute of Child Health,NIHR Great Ormond Street Hospital Biomedical Research Centre
[5] NHS Foundation Trust,Great Ormond Street Hospital for Children
[6] Institute of Neurology,Behaviour Analytics Lab, Data Science Institute
[7] UCL,Brain & Behaviour Lab, Institute for Artificial and Human Intelligence
[8] National Hospital for Neurology and Neurosurgery (UCLH),Chair in Digital Health, Faculty of Life Sciences
[9] MRC London Institute of Medical Sciences,undefined
[10] Imperial College London,undefined
[11] University of Bayreuth,undefined
[12] University of Bayreuth,undefined
来源
Nature Medicine | 2023年 / 29卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Friedreichʼs ataxia (FA) is caused by a variant of the Frataxin (FXN) gene, leading to its downregulation and progressively impaired cardiac and neurological function. Current gold-standard clinical scales use simplistic behavioral assessments, which require 18- to 24-month-long trials to determine if therapies are beneficial. Here we captured full-body movement kinematics from patients with wearable sensors, enabling us to define digital behavioral features based on the data from nine FA patients (six females and three males) and nine age- and sex-matched controls, who performed the 8-m walk (8-MW) test and 9-hole peg test (9 HPT). We used machine learning to combine these features to longitudinally predict the clinical scores of the FA patients, and compared these with two standard clinical assessments, Spinocerebellar Ataxia Functional Index (SCAFI) and Scale for the Assessment and Rating of Ataxia (SARA). The digital behavioral features enabled longitudinal predictions of personal SARA and SCAFI scores 9 months into the future and were 1.7 and 4 times more precise than longitudinal predictions using only SARA and SCAFI scores, respectively. Unlike the two clinical scales, the digital behavioral features accurately predicted FXN gene expression levels for each FA patient in a cross-sectional manner. Our work demonstrates how data-derived wearable biomarkers can track personal disease trajectories and indicates the potential of such biomarkers for substantially reducing the duration or size of clinical trials testing disease-modifying therapies and for enabling behavioral transcriptomics.
引用
收藏
页码:86 / 94
页数:8
相关论文
共 50 条
  • [1] A wearable motion capture suit and machine learning predict disease progression in Friedreich's ataxia
    Kadirvelu, Balasundaram
    Gavriel, Constantinos
    Nageshwaran, Sathiji
    Chan, Jackson Ping Kei
    Nethisinghe, Suran
    Athanasopoulos, Stavros
    Ricotti, Valeria
    Voit, Thomas
    Giunti, Paola
    Festenstein, Richard
    Faisal, A. Aldo
    [J]. NATURE MEDICINE, 2023, 29 (1) : 86 - 94
  • [2] Wearable body and wireless inertial sensors for machine learning classification of gait for people with Friedreich's ataxia
    LeMoyne, Robert
    Heerinckx, Frederic
    Aranca, Tanya
    De Jager, Robert
    Zesicwicz, Theresa
    Saal, Harry J.
    [J]. 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2016, : 147 - 151
  • [3] Pattern of Cerebellar Atrophy in Friedreich’s Ataxia—Using the SUIT Template
    Tobias Lindig
    Benjamin Bender
    Vinod J. Kumar
    Till-Karsten Hauser
    Wolfgang Grodd
    Bettina Brendel
    Jennifer Just
    Matthis Synofzik
    Uwe Klose
    Klaus Scheffler
    Ulrike Ernemann
    Ludger Schöls
    [J]. The Cerebellum, 2019, 18 : 435 - 447
  • [4] Strong Correlations Among Four Measures of Disease Progression in Friedreich's Ataxia
    Saal, Harry J.
    Heerinckx, Frederic
    Zawadzki, Rezi
    Omidvar, Omid
    Kilpatrick, Marcus
    Zesiewicz, Theresa
    [J]. MOVEMENT DISORDERS, 2018, 33 (06) : 1021 - 1021
  • [5] Heart disease in Friedreich's ataxia
    Hanson, Emily
    Sheldon, Mark
    Pacheco, Brenda
    Alkubeysi, Mohammed
    Raizada, Veena
    [J]. WORLD JOURNAL OF CARDIOLOGY, 2019, 11 (01): : 1 - 12
  • [6] Pattern of Cerebellar Atrophy in Friedreich's Ataxia-Using the SUIT Template
    Lindig, Tobias
    Bender, Benjamin
    Kumar, Vinod J.
    Hauser, Till-Karsten
    Grodd, Wolfgang
    Brendel, Bettina
    Just, Jennifer
    Synofzik, Matthis
    Klose, Uwe
    Scheffler, Klaus
    Ernemann, Ulrike
    Schoels, Ludger
    [J]. CEREBELLUM, 2019, 18 (03): : 435 - 447
  • [7] Wearable Motion Capture Suit with Full-body Tactile Sensors
    Fujimori, Yuki
    Ohmura, Yoshiyuki
    Harada, Tatsuya
    Kuniyoshi, Yasuo
    [J]. ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 3652 - 3659
  • [8] Identification of motor progression in Parkinson’s disease using wearable sensors and machine learning
    Charalampos Sotirakis
    Zi Su
    Maksymilian A. Brzezicki
    Niall Conway
    Lionel Tarassenko
    James J. FitzGerald
    Chrystalina A. Antoniades
    [J]. npj Parkinson's Disease, 9
  • [9] Identification of motor progression in Parkinson's disease using wearable sensors and machine learning
    Sotirakis, Charalampos
    Su, Zi
    Brzezicki, Maksymilian A.
    Conway, Niall
    Tarassenko, Lionel
    Fitzgerald, James J.
    Antoniades, Chrystalina A.
    [J]. NPJ PARKINSONS DISEASE, 2023, 9 (01)
  • [10] The Responsiveness of Gait and Balance Outcomes to Disease Progression in Friedreich Ataxia
    Milne, Sarah C.
    Kim, Seok Hun
    Murphy, Anna
    Larkindale, Jane
    Farmer, Jennifer
    Malapira, Ritchie
    Danoudis, Mary
    Shaw, Jessica
    Ramakrishnan, Tyagi
    Rasouli, Fatemeh
    Yiu, Eppie M.
    Georgiou-Karistianis, Nellie
    Tai, Geneieve
    Zesiewicz, Theresa
    Delatycki, Martin B.
    Corben, Louise A.
    [J]. CEREBELLUM, 2021, 21 (6): : 963 - 975