On multi-ideals and polynomial ideals of Banach spaces: a new approach to coherence and compatibility

被引:0
|
作者
Daniel Pellegrino
Joilson Ribeiro
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
[2] Universidade Federal da Bahia,Instituto de Matemática
来源
关键词
Absolutely summing operators; Operator ideals; Multi-ideals; Polynomial ideals; 46G25; 47H60; 46G20; 47L22;
D O I
暂无
中图分类号
学科分类号
摘要
What is an adequate extension of an operator ideal I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{I }$$\end{document} to the polynomial and multilinear settings? This question motivated the appearance of the interesting concepts of coherent sequences of polynomial ideals and compatibility of a polynomial ideal with an operator ideal, introduced by D. Carando et al. We propose a different approach by considering pairs (Uk,Mk)k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal{U }_{k},\mathcal{M }_{k})_{k=1}^{\infty }$$\end{document}, where (Uk)k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal{U }_{k})_{k=1}^{\infty }$$\end{document} is a polynomial ideal and (Mk)k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal{M }_{k})_{k=1}^{\infty }$$\end{document} is a multi-ideal, instead of considering just polynomial ideals. It is our belief that our approach ends a discomfort caused by the previous theory: for real scalars the canonical sequence (Pk)k=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal{P }_{k})_{k=1}^{\infty }$$\end{document} of continuous k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-homogeneous polynomials is not coherent according to the definition of Carando et al. We apply these new notions to test the pairs of ideals of nuclear and integral polynomials and multilinear operators, the factorisation method and different classes that generalise the concept of absolutely summing operator.
引用
收藏
页码:379 / 415
页数:36
相关论文
共 50 条
  • [1] On multi-ideals and polynomial ideals of Banach spaces: a new approach to coherence and compatibility
    Pellegrino, Daniel
    Ribeiro, Joilson
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 173 (03): : 379 - 415
  • [2] An approach to fuzzy multi-ideals of near rings
    Al Tahan, Madeline
    Hoskova-Mayerova, Sarka
    Davvaz, Bijan
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 6233 - 6243
  • [3] Holomorphic functions and polynomial ideals on Banach spaces
    Daniel Carando
    Verónica Dimant
    Santiago Muro
    [J]. Collectanea Mathematica, 2012, 63 : 71 - 91
  • [4] Holomorphic functions and polynomial ideals on Banach spaces
    Carando, Daniel
    Dimant, Veronica
    Muro, Santiago
    [J]. COLLECTANEA MATHEMATICA, 2012, 63 (01) : 71 - 91
  • [5] Coherent sequences of polynomial ideals on Banach spaces
    Carando, Daniel
    Dimant, Veronica
    Muro, Santiago
    [J]. MATHEMATISCHE NACHRICHTEN, 2009, 282 (08) : 1111 - 1133
  • [6] Two-sided polynomial ideals on Banach spaces
    Botelho, Geraldo
    Torres, Ewerton R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 900 - 914
  • [7] ON THE REPRESENTATION OF MULTI-IDEALS BY TENSOR NORMS
    Botelho, Geraldo
    Caliskan, Erhan
    Pellegrino, Daniel
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (02) : 253 - 269
  • [8] On ideals in Banach spaces
    Tao, TSSRK
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (02) : 595 - 609
  • [9] BANACH IDEALS ON HILBERT SPACES
    GORDON, Y
    LEWIS, DR
    [J]. STUDIA MATHEMATICA, 1975, 54 (02) : 161 - 172
  • [10] ON INTERSECTIONS OF IDEALS IN BANACH SPACES
    Rao, T. S. S. R. K.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (02): : 589 - 594