Dynamical tunnelling of ultracold atoms

被引:0
|
作者
W. K. Hensinger
H. Häffner
A. Browaeys
N. R. Heckenberg
K. Helmerson
C. McKenzie
G. J. Milburn
W. D. Phillips
S. L. Rolston
H. Rubinsztein-Dunlop
B. Upcroft
机构
[1] National Institute of Standards and Technology,Centre for Laser Science, Department of Physics
[2] The University of Queensland,Centre for Quantum Computer Technology
[3] The University of Queensland,undefined
来源
Nature | 2001年 / 412卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The divergence of quantum and classical descriptions of particle motion is clearly apparent in quantum tunnelling1,2 between two regions of classically stable motion. An archetype of such non-classical motion is tunnelling through an energy barrier. In the 1980s, a new process, ‘dynamical’ tunnelling1,2,3, was predicted, involving no potential energy barrier; however, a constant of the motion (other than energy) still forbids classically the quantum-allowed motion. This process should occur, for example, in periodically driven, nonlinear hamiltonian systems with one degree of freedom4,5,6. Such systems may be chaotic, consisting of regions in phase space of stable, regular motion embedded in a sea of chaos. Previous studies predicted4 dynamical tunnelling between these stable regions. Here we observe dynamical tunnelling of ultracold atoms from a Bose–Einstein condensate in an amplitude-modulated optical standing wave. Atoms coherently tunnel back and forth between their initial state of oscillatory motion (corresponding to an island of regular motion) and the state oscillating 180° out of phase with the initial state.
引用
收藏
页码:52 / 55
页数:3
相关论文
共 50 条
  • [1] Dynamical tunnelling of ultracold atoms
    Hensinger, WK
    Häffer, H
    Browaeys, A
    Heckenberg, NR
    Helmerson, K
    McKenzie, C
    Milburn, GJ
    Phillips, WD
    Rolston, SL
    Rubinsztein-Dunlop, H
    Upcroft, B
    [J]. NATURE, 2001, 412 (6842) : 52 - 55
  • [2] Tunnelling measured with ultracold atoms
    Ball, Philip
    [J]. PHYSICS WORLD, 2020, 33 (09) : 5 - 5
  • [3] Dynamical localization of ultracold sodium atoms
    Bharucha, CF
    Robinson, JC
    Moore, FL
    Sundaram, B
    Niu, Q
    Raizen, MG
    [J]. PHYSICAL REVIEW E, 1999, 60 (04): : 3881 - 3895
  • [4] Dynamical tunneling with ultracold atoms in magnetic microtraps
    Lenz, Martin
    Wuester, Sebastian
    Vale, Christopher J.
    Heckenberg, Norman R.
    Rubinsztein-Dunlop, Halina
    Holmes, C. A.
    Milburn, G. J.
    Davis, Matthew J.
    [J]. PHYSICAL REVIEW A, 2013, 88 (01):
  • [5] Dynamical Crystallization in the Dipole Blockade of Ultracold Atoms
    Pohl, T.
    Demler, E.
    Lukin, M. D.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [6] Dynamical Generation of Topological Magnetic Lattices for Ultracold Atoms
    Yu, Jinlong
    Xu, Zhi-Fang
    Lu, Rong
    You, Li
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [7] Quantum magnetism of ultracold atoms with a dynamical pseudospin degree of freedom
    Grass, Tobias
    Celi, Alessio
    Lewenstein, Maciej
    [J]. PHYSICAL REVIEW A, 2014, 90 (04):
  • [8] Stability and dynamical property for two-species ultracold atoms in double wells
    Xu, Xiao-Qiang
    Lu, Li-Hua
    Li, You-Quan
    [J]. PHYSICAL REVIEW A, 2008, 78 (04):
  • [9] Observing Topological Charges and Dynamical Bulk-Surface Correspondence with Ultracold Atoms
    Yi, Chang-Rui
    Zhang, Long
    Zhang, Lin
    Jiao, Rui-Heng
    Cheng, Xiang-Can
    Wang, Zong-Yao
    Xu, Xiao-Tian
    Sun, Wei
    Liu, Xiong-Jun
    Chen, Shuai
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (19)
  • [10] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
    Sun, Xiangxiang
    Qi, Hao-Yue
    Zhang, Pengfei
    Zheng, Wei
    [J]. Chinese Physics B, 2024, 33 (11)