The observational constraint on constant-roll inflation

被引:0
|
作者
Qing Gao
机构
[1] Southwest University,School of Physical Science and Technology
关键词
constant-roll inflation; cosmological perturbations; cosmological constraints; 98.80.Cq; 98.80.-k; 04.50.Kd;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the constant-roll inflation with constant ϵ2 and constant η¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar \eta $$\end{document}. By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor to scalar ratio are derived up to the first order of ϵ1. The model with constant ϵ2 is ruled out by the observations at the 3σ confidence level, and the model with constant η¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar \eta $$\end{document} is consistent with the observations at the 1σ confidence level. The potential for the model with constant η¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar \eta $$\end{document} is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be the slow-roll inflation, the ns-r results from the constant-roll inflation are not the same as those from the slow-roll inflation even when η¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar \eta $$\end{document} ~ 0.01.
引用
收藏
相关论文
共 50 条
  • [1] The observational constraint on constant-roll inflation
    Gao, Qing
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (07)
  • [2] The observational constraint on constant-roll inflation
    Qing Gao
    [J]. Science China(Physics,Mechanics & Astronomy), 2018, Mechanics & Astronomy)2018 (07) : 42 - 47
  • [3] Observational constraints on DBI constant-roll inflation
    Golanbari, Tayeb
    Mohammadi, Abolhassan
    Saaidi, Khaled
    [J]. PHYSICS OF THE DARK UNIVERSE, 2020, 27
  • [4] On the constant-roll inflation
    Yi, Zhu
    Gong, Yungui
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (03):
  • [5] Constant-roll inflation: Confrontation with recent observational data
    Motohashi, Hayato
    Starobinsky, Alexei A.
    [J]. EPL, 2017, 117 (03)
  • [6] Inflation with a smooth constant-roll to constant-roll era transition
    Odintsov, S. D.
    Oikonomou, V. K.
    [J]. PHYSICAL REVIEW D, 2017, 96 (02)
  • [7] Tachyon constant-roll inflation
    Mohammadi, A.
    Saaidi, Kh.
    Golanbari, T.
    [J]. PHYSICAL REVIEW D, 2018, 97 (08)
  • [8] Anisotropic constant-roll Inflation
    Asuka Ito
    Jiro Soda
    [J]. The European Physical Journal C, 2018, 78
  • [9] Anisotropic constant-roll Inflation'
    Ito, Asuka
    Soda, Jiro
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (01):
  • [10] Constant-roll brane inflation
    Mohammadi, Abolhassan
    Golanbari, Tayeb
    Nasri, Salah
    Saaidi, Khaled
    [J]. PHYSICAL REVIEW D, 2020, 101 (12):