On the Monodromy Manifold of q-Painlevé VI and Its Riemann–Hilbert Problem

被引:0
|
作者
Nalini Joshi
Pieter Roffelsen
机构
[1] The University of Sydney,School of Mathematics and Statistics F07
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the q-difference sixth Painlevé equation (qPVI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\text {P}_{\text {VI}}$$\end{document}) through its associated Riemann–Hilbert problem (RHP) and show that the RHP is always solvable for irreducible monodromy data. This enables us to identify the solution space of qPVI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\text {P}_{\text {VI}}$$\end{document} with a monodromy manifold for generic parameter values. We deduce this manifold explicitly and show it is a smooth and affine algebraic surface when it does not contain reducible monodromy. Furthermore, we describe the RHP for reducible monodromy data and show that, when solvable, its solution is given explicitly in terms of certain orthogonal polynomials yielding special function solutions of qPVI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\text {P}_{\text {VI}}$$\end{document}.
引用
收藏
页码:97 / 149
页数:52
相关论文
共 36 条