Orbital stability of solitary waves of compound KdV-type equation

被引:0
|
作者
Wei-guo Zhang
Hui-wen Li
Xiao-shuang Bu
Lan-yun Bian
机构
[1] University of Shanghai for Science and Technology,School of Science
关键词
orbital stability; compound KdV-type equation; solitary waves; spectral analysis; 35B35; 35Q53; 35Q51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the orbital stability of solitary waves of compound KdV-type equation in the form of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${u_t} + a{u^p}ux + b{u^{2p}}ux + {u_{xxx}} = 0\left( {b \geqslant 0,p{\text{ > }}0} \right)$\end{document}. Our results imply that orbital stability of solitary waves is affected not only by the highest-order nonlinear term \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b{u^{2p}}ux$\end{document}, but also the nonlinear term \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a{u^p}ux$\end{document}. For the case of b > 0 and 0 < p ≤ 2, we obtain that the positive solitary wave u1(x−ct) is stable when a > 0, while that unstable when a < 0. The stability for negative solitary wave u2(x − ct) is on the contrary. In particular, we point that the nonlinear term with coefficient a makes contributes to the stability of the solitary waves when p = 2 and a > 0.
引用
收藏
页码:1033 / 1042
页数:9
相关论文
共 50 条
  • [1] Orbital Stability of Solitary Waves of Compound KdV-type Equation
    Zhang, Wei-guo
    Li, Hui-wen
    Bu, Xiao-shuang
    Bian, Lan-yun
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04): : 1033 - 1042
  • [2] Orbital Stability of Solitary Waves of Compound KdV-type Equation
    Wei-guo ZHANG
    Hui-wen Li
    Xiao-shuang BU
    Lan-yun BIAN
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 1033 - 1042
  • [3] Orbital stability of solitary waves for the compound KdV equation
    Zhang, Weiguo
    Shi, Gaolong
    Qin, Yinghao
    Wei, Gongming
    Guo, Boling
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1627 - 1639
  • [4] Orbital stability of solitary waves of generalized compound KDV equations
    College of Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China
    [J]. Shanghai Ligong Daxue Xuebao, 2007, 1 (1-5):
  • [5] On the orbital stability of Gaussian solitary waves in the log-KdV equation
    Carles, Remi
    Pelinovsky, Dmitry
    [J]. NONLINEARITY, 2014, 27 (12) : 3185 - 3202
  • [6] Orbital stability of solitary waves to the coupled compound KdV and MKdV equations with two components
    Zheng, Xiaoxiao
    Xin, Jie
    Gu, Yongyi
    [J]. AIMS MATHEMATICS, 2020, 5 (04): : 3298 - 3320
  • [7] Bifurcations of traveling wave solutions in a compound KdV-type equation
    Zhang, ZD
    Bi, QS
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1185 - 1194
  • [8] STABILITY OF SMALL PERIODIC WAVES IN FRACTIONAL KdV-TYPE EQUATIONS
    Johnson, Mathew A.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (05) : 3168 - 3193
  • [9] Propagation of sech2-type solitary waves in hierarchical KdV-type systems
    Ilison, Lauri
    Salupere, Andrus
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (11) : 3314 - 3327
  • [10] STATIONARY SOLITARY WAVES OF THE 5TH-ORDER KDV-TYPE EQUATIONS
    KARPMAN, VI
    [J]. PHYSICS LETTERS A, 1994, 186 (04) : 300 - 302