Cubic Graphs with Large Ratio of Independent Domination Number to Domination Number

被引:0
|
作者
Suil O
Douglas B. West
机构
[1] Georgia State University,Department of Mathematics
[2] Zhejiang Normal University,Department of Mathematics
[3] University of Illinois,Department of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Independent domination number; Domination number; Cubic graph; 3-regular;
D O I
暂无
中图分类号
学科分类号
摘要
A dominating set in a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a set S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} of vertices such that every vertex outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} has a neighbor in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}; the domination numberγ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (G)$$\end{document} is the minimum size of such a set. The independent domination number, written i(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G)$$\end{document}, is the minimum size of a dominating set that also induces no edges. Henning and Southey conjectured i(G)/γ(G)≤6/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G)/\gamma (G) \le 6/5$$\end{document} for every cubic (3-regular) graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with sufficiently many vertices. We provide an infinite family of counterexamples, giving for each positive integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} a 2-connected cubic graph Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_k$$\end{document} with 14k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14k$$\end{document} vertices such that i(Hk)=5k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(H_k)=5k$$\end{document} and γ(Hk)=4k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (H_k)=4k$$\end{document}.
引用
收藏
页码:773 / 776
页数:3
相关论文
共 50 条
  • [1] Cubic Graphs with Large Ratio of Independent Domination Number to Domination Number
    Suil, O.
    West, Douglas B.
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (02) : 773 - 776
  • [2] On the ratio of the domination number and the independent domination number in graphs
    Furuya, Michitaka
    Ozeki, Kenta
    Sasaki, Akinari
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 178 : 157 - 159
  • [3] Domination number of cubic graphs with large girth
    Kral', Daniel
    Skoda, Petr
    Volec, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2012, 69 (02) : 131 - 142
  • [4] GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBER
    Vaidya, S. K.
    Pandit, R. M.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (01): : 74 - 79
  • [5] A note on the independent domination number versus the domination number in bipartite graphs
    Shaohui Wang
    Bing Wei
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 533 - 536
  • [6] A note on the independent domination number versus the domination number in bipartite graphs
    Wang, Shaohui
    Wei, Bing
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 533 - 536
  • [7] The domination number of cubic Hamiltonian graphs
    Cropper, M.
    Greenwell, D.
    Hilton, A. J. W.
    Kostochka, A.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2005, 2 (02) : 137 - 144
  • [8] On the Independent Domination Number of Regular Graphs
    Wayne Goddard
    Michael A. Henning
    Jeremy Lyle
    Justin Southey
    [J]. Annals of Combinatorics, 2012, 16 : 719 - 732
  • [9] A note on the independent domination number in graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 3087 - 3089
  • [10] On the Independent Domination Number of Regular Graphs
    Goddard, Wayne
    Henning, Michael A.
    Lyle, Jeremy
    Southey, Justin
    [J]. ANNALS OF COMBINATORICS, 2012, 16 (04) : 719 - 732