A highly efficient triboelectric negative air ion generator

被引:0
|
作者
Hengyu Guo
Jie Chen
Longfei Wang
Aurelia Chi Wang
Yafeng Li
Chunhua An
Jr-Hau He
Chenguo Hu
Vincent K. S. Hsiao
Zhong Lin Wang
机构
[1] Chinese Academy of Sciences,Beijing Institute of Nanoenergy and Nanosystems
[2] Georgia Institute of Technology,School of Materials Science and Engineering
[3] Chongqing University,Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology
[4] City University of Hong Kong,Department of Materials Science and Engineering
[5] National Chi Nan University,Department of Applied Materials and Optoelectronic Engineering
来源
Nature Sustainability | 2021年 / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Negative air ions (NAIs) have been widely harnessed in recent technologies for air pollutant removal and their beneficial effects on human health, including allergy relief and neurotransmitter modulation. Herein, we report a corona-type, mechanically stimulated triboelectric NAI generator. Using the high output voltage from a triboelectric nanogenerator, air molecules can be locally ionized from carbon fibre electrodes through various movements, with the electron–ion transformation efficiency reaching up to 97%. Using a palm-sized device, 1 × 1013 NAIs (theoretically 1 × 105 ions cm−3 in 100 m3 space) are produced in one sliding motion, and particulate matter (PM 2.5) can be rapidly reduced from 999 to 0 µg m−3 in 80 s (in a 5,086 cm3 glass chamber) under an operation frequency of 0.25 Hz. This triboelectric NAI generator is simple, safe and effective, providing an appealing alternative, sustainable avenue to improving health and contributing to a cleaner environment.
引用
收藏
页码:147 / 153
页数:6
相关论文
共 50 条
  • [1] A highly efficient triboelectric negative air ion generator
    Guo, Hengyu
    Chen, Jie
    Wang, Longfei
    Wang, Aurelia Chi
    Li, Yafeng
    An, Chunhua
    He, Jr-Hau
    Hu, Chenguo
    Hsiao, Vincent K. S.
    Wang, Zhong Lin
    NATURE SUSTAINABILITY, 2021, 4 (02) : 147 - 153
  • [2] Triboelectric negative air ion generators for efficient membrane fouling control
    Dai, Yi
    Yu, Kang
    Li, Huan
    Zhu, Hongyue
    Xie, Jiao
    Nie, Dengpan
    Liu, Tao
    Luo, Bin
    Gao, Cong
    Luo, Yingchun
    Wu, Yiyi
    Nie, Shuangxi
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [3] A self-powered triboelectric negative ion generator in pipeline
    Li, Fangming
    Deng, Cuiwen
    Sun, Minzheng
    Wan, Xingfu
    Sun, Shuowen
    Xu, Weipeng
    Du, Taili
    Zou, Yongjiu
    Yuan, Haichao
    Pan, Xinxiang
    Mi, Jianchun
    Xu, Minyi
    NANO ENERGY, 2023, 112
  • [4] Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator
    Kim, Dong Yeong
    Kim, Hyun Soo
    Jung, Jong Hoon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (11) : 1720 - 1723
  • [5] Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator
    Dong Yeong Kim
    Hyun Soo Kim
    Jong Hoon Jung
    Journal of the Korean Physical Society, 2016, 69 : 1720 - 1723
  • [6] Efficient removal of oil mist via triboelectric negative air ions
    Dai, Yi
    Yu, Kang
    Li, Huan
    Zhu, Hongyue
    He, Qiyu
    Zhang, Tinghui
    Liu, Tao
    Luo, Bin
    Zhang, Song
    Cai, Chenchen
    Wu, Yiyi
    Luo, Yingchun
    Nie, Shuangxi
    NANO ENERGY, 2024, 126
  • [7] TRIBOELECTRIC GENERATOR
    SCHMIDT, WF
    IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1989, 24 (02): : 198 - 198
  • [8] A highly efficient constant-voltage triboelectric nanogenerator
    Li, Xinyuan
    Zhang, Chuguo
    Gao, Yikui
    Zhao, Zhihao
    Hu, Yuexiao
    Yang, Ou
    Liu, Lu
    Zhou, Linglin
    Wang, Jie
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) : 1334 - 1345
  • [9] Flexible triboelectric generator!
    Fan, Feng-Ru
    Tian, Zhong-Qun
    Wang, Zhong Lin
    NANO ENERGY, 2012, 1 (02) : 328 - 334
  • [10] Model of the Triboelectric Generator
    Husak, M.
    Bily, A.
    2016 11TH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES & MICROSYSTEMS (ASDAM), 2016, : 109 - 112