Multiple periodic orbits of high-dimensional differential delay systems

被引:0
|
作者
Zhongmin Sun
Weigao Ge
Lin Li
机构
[1] Weifang Engineering Vocational College,School of Electromechanical Engineering
[2] Beijing Institute of Technology,School of Mathematics and Statistics
关键词
Differential delay system; Periodic orbits; Critical point theory; Variational method; 34K13; 58E50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider differential delay systems of the form x′(t)=−∑s=12k−1(−1)s+1∇F(x(t−s)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'(t)=-\sum_{s=1}^{2k-1}(-1)^{s+1} \nabla F \bigl(x(t-s) \bigr), $$\end{document} in which the coefficients of the nonlinear terms with different hysteresis have different signs. Such systems have not been studied before. The multiplicity of the periodic orbits is related to the eigenvalues of the limit matrix. The results provide a theoretical basis for the study of differential delay systems.
引用
收藏
相关论文
共 50 条
  • [1] Multiple periodic orbits of high-dimensional differential delay systems
    Sun, Zhongmin
    Ge, Weigao
    Li, Lin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [2] Existence of periodic orbits for high-dimensional autonomous systems
    Sanchez, Luis A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 409 - 418
  • [3] Existence and bifurcation of periodic solutions of high-dimensional delay differential equations
    Han, M
    Bi, P
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1027 - 1036
  • [4] Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems
    Tian, Huanhuan
    Han, Maoan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) : 7448 - 7474
  • [5] Bifurcations of periodic orbits, subharmonic solutions and invariant Tori of high-dimensional systems
    Han, Maoan
    Jiang, Katie
    Green Jr., David
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (03): : 319 - 329
  • [6] Bifurcations of periodic orbits, subharmonic solutions and invariant Tori of high-dimensional systems
    Han, MA
    Jiang, K
    Green, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (03) : 319 - 329
  • [7] Periodic orbits for some systems of delay differential equations
    Jaume Llibre
    Alexandrina-Alina Tarţa
    Acta Mathematica Sinica, English Series, 2008, 24 : 267 - 274
  • [8] Periodic Orbits for Some Systems of Delay Differential Equations
    Jaume LLIBRE
    Alexandrina-Alina TAR■A
    Acta Mathematica Sinica(English Series), 2008, 24 (02) : 267 - 274
  • [9] Periodic orbits for some systems of delay differential equations
    Llibre, Jaume
    Tarta, Alexandrina-Alina
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 267 - 274
  • [10] Tracking unstable periodic orbits in nonstationary high-dimensional chaotic systems: Method and experiment
    Gluckman, BJ
    Spano, ML
    Yang, WM
    Ding, MZ
    In, V
    Ditto, WL
    PHYSICAL REVIEW E, 1997, 55 (05): : 4935 - 4942