Blind Source Separation Based on Nonparametric Density Estimation

被引:0
|
作者
Peng Jia
Hong-Yuan Zhang
Xi-Zhi Shi
机构
[1] State Key Laboratory for Vibration,
[2] Shock and Noise,undefined
[3] Shanghai Jiao Tong University,undefined
[4] Shanghai 200030,undefined
关键词
Estimation Method; Nonlinear Function; Density Estimation; Score Function; Direct Estimation;
D O I
暂无
中图分类号
学科分类号
摘要
A nonparametric density estimation method is used to directly estimate the score functions encountered in relative gradient (or natural gradient) adaptation algorithms in the blind source separation problem. Compared to the method where simple nonlinear functions are used to replace the unknown score functions, the key advantage of the direct estimation of the score functions lies in the fact that it enables the algorithm to separate hybrid mixtures of sources that contain both super-Gaussian and sub-Gaussian signals. The source statistics required for the choices of the nonlinear functions is no longer needed, because the score functions are directly estimated. The algorithm is thus expected to be applicable to more “blind” cases.
引用
收藏
页码:57 / 67
页数:10
相关论文
共 50 条
  • [1] Blind source separation based on nonparametric density estimation
    Jia, P
    Zhang, HY
    Shi, XZ
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2003, 22 (01) : 57 - 67
  • [2] Baseband Communication Signal Blind Separation Algorithm Based on Complex Nonparametric Probability Density Estimation
    Yang, Hua
    Zhang, Hang
    Li, Jiong
    Yang, Liu
    Ding, Wenchun
    [J]. IEEE ACCESS, 2018, 6 : 22434 - 22440
  • [3] Blind source separation using clustering-based multivariate density estimation algorithm
    He, ZY
    Yang, LX
    Liu, J
    Lu, ZY
    He, C
    Shi, YH
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (02) : 575 - 579
  • [4] Blind Source Separation Based on Power Spectral Density
    Wang, JingHui
    Zhao, YuanChao
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 602 - 609
  • [5] Mixing Matrix Estimation in Blind Source Separation Based on CFSFDP
    Wang, Wang
    Su, Donglin
    Zhao, Zihua
    [J]. 2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [6] Underdetermined blind separation based on source signals' number estimation
    Tan, Bei-Hai
    Xie, Sheng-Li
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2008, 30 (04): : 863 - 867
  • [7] Approaches for blind separation of sources based on multivariate density estimation
    He, ZY
    Yang, LX
    Liu, J
    Lu, ZY
    He, C
    Shi, YH
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 1999, 9 (3-4) : 243 - 253
  • [8] Noise Source Separation based on the Blind Source Separation
    Yang, Yang
    Li, Zuoli
    Wang, Xiuqin
    Zhang, Di
    [J]. 2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 2236 - +
  • [9] Dynamic Frame Size Estimation Algorithm based on Blind Source Separation
    Gao Shu-jing
    Yang Li-juan
    [J]. PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION SYSTEMS (ICCIS 2017), 2015, : 205 - 209
  • [10] Underdetermined Blind Source Separation Based on Spatial Estimation and Compressed Sensing
    Shuang Wei
    Rui Zhang
    [J]. Circuits, Systems, and Signal Processing, 2024, 43 : 2428 - 2453