On Subadditive Functions Bounded Above on a “Large” Set

被引:0
|
作者
Nicholas H. Bingham
Eliza Jabłońska
Wojciech Jabłoński
Adam J. Ostaszewski
机构
[1] Imperial College London,Department of Mathematics
[2] Pedagogical University of Cracow,Department of Mathematics
[3] London School of Economics,Mathematics Department
来源
Results in Mathematics | 2020年 / 75卷
关键词
Shift–compact set; null–finite set; Haar–null set; Haar–meagre set; subadditive function; local boundedness at a point; WNT–function; Primary 39B62; Secondary 28C10; 18B30; 54E52;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that boundedness of a subadditive function need not imply its continuity. Here we prove that each subadditive function f:X→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow {\mathbb {R}}$$\end{document} bounded above on a shift–compact (non–Haar–null, non–Haar–meagre) set is locally bounded at each point of the domain. Our results refer to results from Kuczma’s book (An Introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, 2nd edn, Birkhäuser Verlag, Basel, 2009, Chapter 16) and papers by Bingham and Ostaszewski [Proc Am Math Soc 136(12):4257–4266, 2008, Aequationes Math 78(3):257–270, 2009, Dissert Math 472:138pp., 2010, Indag Math (N.S.) 29:687–713, 2018, Aequationes Math 93(2):351–369, 2019).
引用
收藏
相关论文
共 50 条