Let K be a compact, connected Lie group and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$K_{\Bbb{C}}$\end{document} its complexification. I consider the Hilbert space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal{H}}L^2\left(K_{\Bbb{C}},\nu _t\right)$\end{document} of holomorphic functions introduced in [H1], where the parameter t is to be interpreted as Planck's constant. In light of [L-S], the complex group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$K_{\Bbb{C}}$\end{document} may be identified canonically with the cotangent bundle of K. Using this identification I associate to each \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$F\in {\cal{H}}L^2\left( K_{\Bbb{C}},\nu _t\right)$\end{document} a “phase space probability density”. The main result of this paper is Theorem 1, which provides an upper bound on this density which holds uniformly over all F and all points in phase space. Specifically, the phase space probability density is at most \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$a_t\left( 2\pi t\right)^{-n}$\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$n=\dim K$\end{document} and at is a constant which tends to one exponentially fast as t tends to zero. At least for small t, this bound cannot be significantly improved.