Phase Space Bounds for Quantum Mechanics on a Compact Lie Group

被引:0
|
作者
Brian C. Hall
机构
[1] McMaster University,
[2] Department of Mathematics,undefined
[3] Hamilton,undefined
[4] ON,undefined
[5] Canada L8S-4K1. E-mail: hallb@icarus.math.mcmaster.ca,undefined
来源
关键词
Hilbert Space; Phase Space; Holomorphic Function; Heat Kernel; Configuration Space;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be a compact, connected Lie group and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $K_{\Bbb{C}}$\end{document} its complexification. I consider the Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal{H}}L^2\left(K_{\Bbb{C}},\nu _t\right)$\end{document} of holomorphic functions introduced in [H1], where the parameter t is to be interpreted as Planck's constant. In light of [L-S], the complex group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $K_{\Bbb{C}}$\end{document} may be identified canonically with the cotangent bundle of K. Using this identification I associate to each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $F\in {\cal{H}}L^2\left( K_{\Bbb{C}},\nu _t\right)$\end{document} a “phase space probability density”. The main result of this paper is Theorem 1, which provides an upper bound on this density which holds uniformly over all F and all points in phase space. Specifically, the phase space probability density is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $a_t\left( 2\pi t\right)^{-n}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=\dim K$\end{document} and at is a constant which tends to one exponentially fast as t tends to zero. At least for small t, this bound cannot be significantly improved.
引用
收藏
页码:233 / 250
页数:17
相关论文
共 50 条