Machine Learning to Identify Predictors of Glycemic Control in Type 2 Diabetes: An Analysis of Target HbA1c Reduction Using Empagliflozin/Linagliptin Data

被引:0
|
作者
Angelo Del Parigi
Wenbo Tang
Dacheng Liu
Christopher Lee
Richard Pratley
机构
[1] Boehringer Ingelheim Pharmaceuticals Inc.,
[2] Boehringer Ingelheim GmbH & Co. KG,undefined
[3] Florida Hospital Diabetes Institute,undefined
[4] AdventHealth Translational Research Institute for Metabolism and Diabetes,undefined
来源
Pharmaceutical Medicine | 2019年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
What did this study look at?This study looked at whether a computer program could predict which people with type 2 diabetes would respond best to a particular treatment.The study treatment was a single-pill combination of two medicines, empagliflozin [em-PAH-gli-FLOW-zin] and linagliptin [LYNN-nah-GLIP-tin]. It is used to lower blood sugar (blood glucose) in people with type 2 diabetes.The researchers used machine learning to analyze data from people who received this treatment. Machine learning uses computer models to find patterns in information.The results helped to predict which people might respond best to the treatment.
引用
下载
收藏
页码:209 / 217
页数:8
相关论文
共 50 条
  • [1] Machine Learning to Identify Predictors of Glycemic Control in Type 2 Diabetes: An Analysis of Target HbA1c Reduction Using Empagliflozin/Linagliptin Data
    Del Parigi, Angelo
    Tang, Wenbo
    Liu, Dacheng
    Lee, Christopher
    Pratley, Richard
    PHARMACEUTICAL MEDICINE, 2019, 33 (03) : 209 - 217
  • [2] Machine learning assessment of vildagliptin and linagliptin effectiveness in type 2 diabetes: Predictors of glycemic control
    Esaifan, Hanin A.
    Saadah, Loai M.
    Abu Hammour, Khawla
    Abu Farha, Rana K.
    PLOS ONE, 2024, 19 (08):
  • [3] A Machine Learning Framework to Identify the Causes of HbA1c in Patients With Type 2 Diabetes Mellitus
    Taghiyev, Anar
    Altun, Alpaslan A.
    Allahverdi, Novruz
    Caglar, Sona
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2019, 21 (02): : 34 - 42
  • [4] Predictors of worsening of glycemic control in patients with type 2 diabetes mellitus not on insulin and with HbA1c≤ 7.0%
    De Valk, HW
    Van Dillen, MEL
    Chorus, RCH
    De Bruin, HJ
    Erkelens, DW
    DIABETES, 2001, 50 : A109 - A110
  • [5] Consistent weight changes irrespective of baseline HbA1c with the combination of empagliflozin/linagliptin in subjects with type 2 diabetes
    Lee, C.
    Barnett, A. H.
    DeFronzo, R. A.
    Lewin, A.
    Patel, S.
    Liu, D.
    Kaste, R.
    Broedl, U.
    DIABETOLOGIA, 2015, 58 : S368 - S369
  • [6] HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target
    Ceriello, Antonio
    Lucisano, Giuseppe
    Prattichizzo, Francesco
    La Grotta, Rosalba
    Franzen, Stefan
    Svensson, Ann-Marie
    Eliasson, Bjorn
    Nicolucci, Antonio
    CARDIOVASCULAR DIABETOLOGY, 2022, 21 (01)
  • [7] HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target
    Antonio Ceriello
    Giuseppe Lucisano
    Francesco Prattichizzo
    Rosalba La Grotta
    Stefan Franzén
    Ann-Marie Svensson
    Björn Eliasson
    Antonio Nicolucci
    Cardiovascular Diabetology, 21
  • [8] USING REAL WORLD DATA TO ESTABLISH AN OPTIMAL TREATMENT TARGET FOR HBA1C IN DIABETES TYPE 2
    Stapff, M. P.
    Palm, S.
    Stacey, J.
    VALUE IN HEALTH, 2018, 21 : S79 - S79
  • [9] Relationship of baseline HbA1c and HbA1c reduction following insulin therapy in Type 2 diabetes
    Giugliano, D.
    Esposito, K.
    DIABETIC MEDICINE, 2011, 28 (02) : 247 - 247
  • [10] The safety, efficacy and predictors for HbA1c reduction of sitagliptin in the treatment of Japanese type 2 diabetes
    Maeda, Hajime
    Kubota, Akira
    Tanaka, Yasushi
    Terauchi, Yasuo
    Matsuba, Ikuro
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2012, 95 (01) : E20 - E22