Global existence and blowup of solutions for a class of nonlinear higher-order wave equations

被引:0
|
作者
Jun Zhou
Xiongrui Wang
Xiaojun Song
Chunlai Mu
机构
[1] Southwest University,School of Mathematics and Statistics
[2] Yibin College,Department of Mathematics
[3] China West Normal University,Department of Mathematics
[4] Chongqing University,School of Mathematics and Statistics
关键词
35L20; 35L70; 58G16; Global existence; Blowup; Energy decay; Lifespan;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of nonlinear higher-order wave equation with nonlinear damping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{tt}+(-\Delta)^mu+a|u_t|^{p-2}u_t=b|u|^{q-2}u$$\end{document}in a bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset\mathbb{R}^N}$$\end{document} (N ≥ 1 is a natural number). We show that the solution is global in time under some conditions without the relation between p and q and we also show that the local solution blows up in finite time if q > p with some assumptions on initial energy. The decay estimate of the energy function for the global solution and the lifespan for the blow-up solution are given. This extend the recent results of Ye (J Ineq Appl, 2010).
引用
收藏
页码:461 / 473
页数:12
相关论文
共 50 条