Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation

被引:0
|
作者
Hironori Abe
Yu-Han Yeh
Yasuhisa Munakata
Kei-Ichiro Ishiguro
Paul R. Andreassen
Satoshi H. Namekawa
机构
[1] University of California,Department of Microbiology and Molecular Genetics
[2] Kumamoto University,Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG)
[3] University of Cincinnati College of Medicine,Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Meiotic sex chromosome inactivation (MSCI) is an essential process in the male germline. While genetic experiments have established that the DNA damage response (DDR) pathway directs MSCI, due to limitations to the experimental systems available, mechanisms underlying MSCI remain largely unknown. Here we establish a system to study MSCI ex vivo, based on a short-term culture method, and demonstrate that active DDR signaling is required both to initiate and maintain MSCI via a dynamic and reversible process. DDR-directed MSCI follows two layers of modifications: active DDR-dependent reversible processes and irreversible histone post-translational modifications. Further, the DDR initiates MSCI independent of the downstream repressive histone mark H3K9 trimethylation (H3K9me3), thereby demonstrating that active DDR signaling is the primary mechanism of silencing in MSCI. By unveiling the dynamic nature of MSCI, and its governance by active DDR signals, our study highlights the sex chromosomes as an active signaling hub in meiosis.
引用
收藏
相关论文
共 50 条
  • [1] Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation
    Abe, Hironori
    Yeh, Yu-Han
    Munakata, Yasuhisa
    Ishiguro, Kei-Ichiro
    Andreassen, Paul R.
    Namekawa, Satoshi H.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis
    Abe, Hironori
    Alavattam, Kris G.
    Hu, Yueh-Chiang
    Pang, Qishen
    Andreassen, Paul R.
    Hegde, Rashmi S.
    Namekawa, Satoshi H.
    CURRENT BIOLOGY, 2020, 30 (03) : 408 - +
  • [3] UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice†
    Xiong, Mengneng
    Zhou, Shumin
    Feng, Shenglei
    Gui, Yiqian
    Li, Jinmei
    Wu, Yanqing
    Dong, Juan
    Yuan, Shuiqiao
    BIOLOGY OF REPRODUCTION, 2022, 107 (01) : 168 - 182
  • [4] Meiotic sex chromosome inactivation
    Cloutier, Jeffrey M.
    Turner, James M. A.
    CURRENT BIOLOGY, 2010, 20 (22) : R962 - R963
  • [5] Meiotic sex chromosome inactivation
    Turner, James M. A.
    DEVELOPMENT, 2007, 134 (10): : 1823 - 1831
  • [6] Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways
    Yosuke Ichijima
    Ho-Su Sin
    Satoshi H. Namekawa
    Cellular and Molecular Life Sciences, 2012, 69 : 2559 - 2572
  • [7] Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways
    Ichijima, Yosuke
    Sin, Ho-Su
    Namekawa, Satoshi H.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2012, 69 (15) : 2559 - 2572
  • [8] SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice
    Hirota, Takayuki
    Blakeley, Paul
    Sangrithi, Mahesh N.
    Mahadevaiah, Shantha K.
    Encheva, Vesela
    Snijders, Ambrosius P.
    Ellnati, Elias
    Ojarikre, Obah A.
    de Rooij, Dirk G.
    Niakan, Kathy K.
    Turner, James M. A.
    DEVELOPMENTAL CELL, 2018, 47 (05) : 645 - +
  • [9] Human Male Meiotic Sex Chromosome Inactivation
    de Vries, Marieke
    Vosters, Sanne
    Merkx, Gerard
    D'Hauwers, Kathleen
    Wansink, Derick G.
    Ramos, Liliana
    de Boer, Peter
    PLOS ONE, 2012, 7 (02):
  • [10] Female Meiotic Sex Chromosome Inactivation in Chicken
    Schoenmakers, Sam
    Wassenaar, Evelyne
    Hoogerbrugge, Jos W.
    Laven, Joop S. E.
    Grootegoed, J. Anton
    Baarends, Willy M.
    PLOS GENETICS, 2009, 5 (05):