Fully automated 2D and 3D convolutional neural networks pipeline for video segmentation and myocardial infarction detection in echocardiography

被引:0
|
作者
Oumaima Hamila
Sheela Ramanna
Christopher J. Henry
Serkan Kiranyaz
Ridha Hamila
Rashid Mazhar
Tahir Hamid
机构
[1] The University of Winnipeg,Department of Applied Computer Science
[2] Qatar University,Department of Electrical Engineering
[3] Thoracic Surgery,undefined
[4] Hamad Hospital,undefined
[5] Hamad Medical Corporation,undefined
[6] Cardiology,undefined
[7] Heart Hospital Hamad Medical Corporation,undefined
来源
Multimedia Tools and Applications | 2022年 / 81卷
关键词
3D convolutional neural network; Video segmentation; Myocardial infarction; Detection; Echocardiography;
D O I
暂无
中图分类号
学科分类号
摘要
Myocardial infarction (MI) is a life-threatening disorder that occurs due to a prolonged limitation of blood supply to the heart muscles, and which requires an immediate diagnosis to prevent death. To detect MI, cardiologists utilize in particular echocardiography, which is a non-invasive cardiac imaging that generates real-time visualization of the heart chambers and the motion of the heart walls. These videos enable cardiologists to identify almost immediately regional wall motion abnormalities (RWMA) of the left ventricle (LV) chamber, which are highly correlated with MI. However, data acquisition is usually performed during emergency which results in poor-quality and noisy data that can affect the accuracy of the diagnosis. To address the identified problems, we propose in this paper an innovative, real-time and fully automated model based on convolutional neural networks (CNN) to early detect MI in a patient’s echocardiography. Our model is a pipeline consisting of a 2D CNN that performs data preprocessing by segmenting the LV chamber from the apical four-chamber (A4C) view, followed by a 3D CNN that performs a binary classification to detect MI. The pipeline was trained and tested on the HMC-QU dataset consisting of 162 echocardiography. The 2D CNN achieved 97.18% accuracy on data segmentation, and the 3D CNN achieved 90.9% accuracy, 100% precision, 95% recall, and 97.2% F1 score. Our detection results outperformed existing state-of-the-art models that were tested on the HMC-QU dataset for MI detection. This work demonstrates that developing a fully automated system for LV segmentation and MI detection is efficient and propitious.
引用
收藏
页码:37417 / 37439
页数:22
相关论文
共 50 条
  • [1] Fully automated 2D and 3D convolutional neural networks pipeline for video segmentation and myocardial infarction detection in echocardiography
    Hamila, Oumaima
    Ramanna, Sheela
    Henry, Christopher J.
    Kiranyaz, Serkan
    Hamila, Ridha
    Mazhar, Rashid
    Hamid, Tahir
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37417 - 37439
  • [2] Fully automated condyle segmentation using 3D convolutional neural networks
    Nayansi Jha
    Taehun Kim
    Sungwon Ham
    Seung-Hak Baek
    Sang-Jin Sung
    Yoon-Ji Kim
    Namkug Kim
    Scientific Reports, 12
  • [3] Fully automated condyle segmentation using 3D convolutional neural networks
    Jha, Nayansi
    Kim, Taehun
    Ham, Sungwon
    Baek, Seung-Hak
    Sung, Sang-Jin
    Kim, Yoon-Ji
    Kim, Namkug
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural Networks
    Zhao, Ningning
    Tong, Nuo
    Ruan, Dan
    Sheng, Ke
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 201 - 209
  • [5] Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks
    Stough, Joshua, V
    Raghunath, Sushravya
    Zhang, Xiaoyan
    Pfeifer, John M.
    Fornwalt, Brandon K.
    Haggerty, Christopher M.
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [6] Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants' Brain
    Karimi, Hamed
    Hamghalam, Mohammad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33511 - 33526
  • [7] Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants’ Brain
    Hamed Karimi
    Mohammad Hamghalam
    Multimedia Tools and Applications, 2024, 83 : 33511 - 33526
  • [8] 2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation
    Hassanzadeh, Tahereh
    Essam, Daryl
    Sarker, Ruhul
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (02) : 712 - 721
  • [9] Segmentation of Aorta 3D CT Images Based on 2D Convolutional Neural Networks
    Bonechi, Simone
    Andreini, Paolo
    Mecocci, Alessandro
    Giannelli, Nicola
    Scarselli, Franco
    Neri, Eugenio
    Bianchini, Monica
    Dimitri, Giovanna Maria
    ELECTRONICS, 2021, 10 (20)
  • [10] Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network
    Bae, Hyun-Jin
    Hyun, Heejung
    Byeon, Younghwa
    Shin, Keewon
    Cho, Yongwon
    Song, Young Ji
    Yi, Seong
    Kuh, Sung-Uk
    Yeom, Jin S.
    Kim, Namkug
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 184