Performance prediction of roadheaders using ensemble machine learning techniques

被引:0
|
作者
Sadi Evren Seker
Ibrahim Ocak
机构
[1] Smith College,
来源
关键词
Roadheader; Performance prediction; Instantaneous cutting rate; Machine learning; Data mining; Ensemble;
D O I
暂无
中图分类号
学科分类号
摘要
Mechanical excavators are widely used in mining, tunneling and civil engineering projects. There are several types of mechanical excavators, such as a roadheader, tunnel boring machine and impact hammer. This is because these tools can bring productivity to the project quickly, accurately and safely. Among these, roadheaders have some advantages like selective mining, mobility, less over excavation, minimal ground disturbances, elimination of blast vibration, reduced ventilation requirements and initial investment cost. A critical issue in successful roadheader application is the ability to evaluate and predict the machine performance named instantaneous (net) cutting rate. Although there are several prediction methods in the literature, for the prediction of roadheader performance, only a few of them have been developed via artificial neural network techniques. In this study, for this purpose, 333 data sets including uniaxial compressive strength and power on cutting boom, 103 data set including RQD, and 125 data sets including machine weight are accumulated from the literature. This paper focuses on roadheader performance prediction using six different machine learning algorithms and a combination of various machine learning algorithms via ensemble techniques. Algorithms are ZeroR, random forest (RF), Gaussian process, linear regression, logistic regression and multi-layer perceptron (MLP). As a result, MLP and RF give better results than the other algorithms also the best solution achieved was bagging technique on RF and principle component analysis (PCA). The best success rate obtained in this study is 90.2% successful prediction, and it is relatively better than contemporary research.
引用
收藏
页码:1103 / 1116
页数:13
相关论文
共 50 条
  • [1] Performance prediction of roadheaders using ensemble machine learning techniques
    Seker, Sadi Evren
    Ocak, Ibrahim
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04): : 1103 - 1116
  • [2] Performance prediction of impact hammer using ensemble machine learning techniques
    Ocak, Ibrahim
    Seker, Sadi Evren
    Rostami, Jamal
    [J]. TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 80 : 269 - 276
  • [3] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [4] Improved prediction of software defects using ensemble machine learning techniques
    Mehta, Sweta
    Patnaik, K. Sridhar
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10551 - 10562
  • [5] Improved prediction of software defects using ensemble machine learning techniques
    Sweta Mehta
    K. Sridhar Patnaik
    [J]. Neural Computing and Applications, 2021, 33 : 10551 - 10562
  • [6] Chip Performance Prediction Using Machine Learning Techniques
    Su, Min-Yan
    Lin, Wei-Chen
    Kuo, Yen-Ting
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    Hsueh, Sung S-Y
    [J]. 2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [7] Prediction of Employee Performance using Machine Learning Techniques
    Lather, Anu Singh
    Malhotra, Ruchika
    Saloni, Priya
    Singh, Prabhjot
    Mittal, Sarthak
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [8] Game State Prediction with Ensemble of Machine Learning Techniques
    Woh, Sange-Myeong
    Lee, Jee-Hyong
    [J]. 2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2018, : 89 - 92
  • [9] Field scale wheat yield prediction using ensemble machine learning techniques
    Gawdiya, Sandeep
    Kumar, Dinesh
    Ahmed, Bulbul
    Sharma, Ramandeep Kumar
    Das, Pankaj
    Choudhary, Manoj
    Mattar, Mohamed A.
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [10] Prediction of Instructor Performance using Machine and Deep Learning Techniques
    Abunasser, Basem S.
    AL-Hiealy, Mohammed Rasheed J.
    Barhoom, Alaa M.
    Almasri, Abdelbaset R.
    Abu-Naser, Samy S.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 78 - 83