Computing the crossing number of a graph is NP-hard. In the paper, for a disconnected 6-vertex graph Q=C5∪K1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q =C_{5}\cup K_{1}$$\end{document}, we obtain the crossing number Z(6,n)+⌊n2⌋\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z(6,n)+\lfloor \frac{n}{2}\rfloor $$\end{document} of the graph Qn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{n}$$\end{document} which is the join product of Q with the discrete graph by introducing the “rotation” method. Moreover, we give crossing numbers for join products of Q with the path and the cycle. Besides, we also get directly crossing numbers for join products of some connected 6-vertex graphs with the path and the cycle, some of which were studied by M. Klešč, D. Kravecová, and J. Petrillová.