Rotation and Crossing Numbers for Join Products

被引:0
|
作者
Zongpeng Ding
机构
[1] Hunan First Normal University,Department of Mathematics
关键词
Rotation; Disconnected graph; Crossing number; Join product; Drawing; 05C10; 05C62;
D O I
暂无
中图分类号
学科分类号
摘要
Computing the crossing number of a graph is NP-hard. In the paper, for a disconnected 6-vertex graph Q=C5∪K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q =C_{5}\cup K_{1}$$\end{document}, we obtain the crossing number Z(6,n)+⌊n2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(6,n)+\lfloor \frac{n}{2}\rfloor $$\end{document} of the graph Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n}$$\end{document} which is the join product of Q with the discrete graph by introducing the “rotation” method. Moreover, we give crossing numbers for join products of Q with the path and the cycle. Besides, we also get directly crossing numbers for join products of some connected 6-vertex graphs with the path and the cycle, some of which were studied by M. Klešč, D. Kravecová, and J. Petrillová.
引用
收藏
页码:4183 / 4196
页数:13
相关论文
共 50 条