Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn

被引:0
|
作者
Andrea L. Bertozzi
Thomas Laurent
机构
[1] University of California,Department of Mathematics
[2] Duke University,Department of Mathematics
来源
关键词
Compact Support; Smooth Solution; Energy Estimate; Topaz; Time Blowup;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the aggregation equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t + \nabla \cdot(u \nabla K\,*\,u) = 0$$\end{document} in Rn, n ≥ 2, where K is a rotationally symmetric, nonnegative decaying kernel with a Lipschitz point at the origin, e.g. K(x) =  e−|x|. We prove finite-time blow-up of solutions from specific smooth initial data, for which the problem is known to have short time existence of smooth solutions.
引用
收藏
页码:717 / 735
页数:18
相关论文
共 50 条