The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems

被引:0
|
作者
Haijin Wang
Qiang Zhang
机构
[1] Nanjing University of Posts and Telecommunications,School of Science
[2] Nanjing University,Department of Mathematics
关键词
Direct discontinuous Galerkin method; Implicit-explicit scheme; Stability analysis; Energy method; Convection-diffusion problem; 65M12; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a fully discrete stability analysis is carried out for the direct discontinuous Galerkin (DDG) methods coupled with Runge-Kutta-type implicit-explicit time marching, for solving one-dimensional linear convection-diffusion problems. In the spatial discretization, both the original DDG methods and the refined DDG methods with interface corrections are considered. In the time discretization, the convection term is treated explicitly and the diffusion term implicitly. By the energy method, we show that the corresponding fully discrete schemes are unconditionally stable, in the sense that the time-step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document} is only required to be upper bounded by a constant which is independent of the mesh size h. Optimal error estimate is also obtained by the aid of a special global projection. Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
引用
收藏
页码:271 / 292
页数:21
相关论文
共 50 条
  • [1] The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems
    Wang, Haijin
    Zhang, Qiang
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (01) : 271 - 292
  • [2] Implicit-Explicit Runge-Kutta Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems
    Vlasak, M.
    Dolejsi, V.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 355 - 362
  • [3] UNIFORM STABILITY FOR LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT RUNGE-KUTTA TIME DISCRETIZATIONS FOR LINEAR CONVECTION-DIFFUSION EQUATION
    Wang, Haijin
    Li, Fengyan
    Shu, Chi-wang
    Zhang, Qiang
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2475 - 2513
  • [4] Stability analysis and error estimates of implicit-explicit Runge-Kutta local discontinuous Galerkin methods for nonlinear fractional convection-diffusion problems
    Aboelenen, Tarek
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [5] Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions
    Wang, Haijin
    Zhang, Qiang
    Shu, Chi-Wang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 342 : 164 - 179
  • [6] ANALYSIS OF AN EMBEDDED DISCONTINUOUS GALERKIN METHOD WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR CONVECTION-DIFFUSION PROBLEMS
    Fu, Guosheng
    Shu, Chi-Wang
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (4-5) : 477 - 499
  • [7] LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR MULTI-DIMENSIONAL CONVECTION-DIFFUSION PROBLEMS
    Wang, Haijin
    Wang, Shiping
    Zhang, Qiang
    Shu, Chi-Wang
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04): : 1083 - 1105
  • [8] Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems
    Wang, Haijin
    Shu, Chi-Wang
    Zhang, Qing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 237 - 258
  • [9] Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes
    Kanevsky, Alex
    Carpenter, Mark H.
    Gottlieb, David
    Hesthaven, Jan S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1753 - 1781
  • [10] Implicit-explicit Runge-Kutta methods for stiff combustion problems
    Lindblad, E.
    Valiev, D. M.
    Muller, B.
    Rantakokko, J.
    Lotstedt, P.
    Liberman, M. A.
    [J]. SHOCK WAVES, VOL 1, PROCEEDINGS, 2009, : 299 - +