Y-system and quasi-classical strings

被引:0
|
作者
Nikolay Gromov
机构
[1] DESY Theory,
[2] II. Institut für Theoretische Physik Universität,undefined
[3] St.Petersburg INP,undefined
关键词
Duality in Gauge Field Theories; AdS-CFT Correspondence; Strong Coupling Expansion; 1/N Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Kazakov, Vieira and the author conjectured the Y-system set of equations describing the planar spectrum of AdS/CFT. In this paper we solve the Y-system equations in the strong coupling scaling limit. We show that the quasi-classical spectrum of string moving inside AdS3 × S1 matches precisely with the prediction of the Y-system. Thus the Y-system, unlike the asymptotic Bethe ansatz, describes correctly the spectrum of one-loop string energies including all exponential finite size corrections. This gives a very non-trivial further support in favor of the conjecture.
引用
收藏
相关论文
共 50 条
  • [1] Y-system and quasi-classical strings
    Gromov, Nikolay
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (01):
  • [2] Y-system, TBA and Quasi-Classical Strings in AdS4 × CP3
    Nikolay Gromov
    Fedor Levkovich-Maslyuk
    [J]. Journal of High Energy Physics, 2010
  • [3] Y-system, TBA and Quasi-Classical Strings in AdS4 x CP3
    Gromov, Nikolay
    Levkovich-Maslyuk, Fedor
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [4] An exact relation for the chemical potential of a quasi-classical system
    V. B. Bobrov
    V. Ya. Mendeleev
    S. A. Triger
    [J]. High Temperature, 2015, 53 : 599 - 600
  • [5] An exact relation for the chemical potential of a quasi-classical system
    Bobrov, V. B.
    Mendeleev, V. Ya.
    Triger, S. A.
    [J]. HIGH TEMPERATURE, 2015, 53 (04) : 599 - 600
  • [6] Quasi-Classical Description Logic
    Zhang, Xiaowang
    Lin, Zuoquan
    [J]. JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 18 (3-4) : 291 - 327
  • [7] Resurgence in quasi-classical scattering
    Prange, RE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49): : 10703 - 10719
  • [8] QUASI-CLASSICAL PURE GYROSCOPE
    RAFANELLI, K
    [J]. NUOVO CIMENTO A, 1967, 52 (02): : 342 - +
  • [9] QUASI-CLASSICAL TRANSFORMATION THEORY
    SCHILLER, R
    [J]. PHYSICAL REVIEW, 1962, 125 (03): : 1109 - &
  • [10] On quasi-classical nature of spin
    Ershova, Tamara P.
    Gorobey, Natalia N.
    Lukyanenko, Alexander S.
    [J]. NINTH INTERNATIONAL WORKSHOP ON NONDESTRUCTIVE TESTING AND COMPUTER SIMULATIONS, 2006, 6253