Sums of infinite series involving the Riemann zeta function II

被引:0
|
作者
Raymond Mortini
Rudolf Rupp
机构
[1] Université de Lorraine,Département de Mathématiques et Institut Élie Cartan de Lorraine, CNRS
[2] Université du Luxembourg,Département de Mathématiques
[3] Technische Hochschule Nürnberg,Fakultät für Angewandte Mathematik, Physik und Allgemeinwissenschaften
[4] Georg Simon Ohm,undefined
关键词
Riemann zeta function; Computation of sums of series; Primary 30B99; Secondary 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
We determine for all natural numbers p the exact value of the converging series ∑n=1∞np(ζ(2n)-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum _{n=1}^\infty n^p (\zeta (2n)-1)}$$\end{document}. Two recursive formulas are given, too. The cases p=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1,2,3$$\end{document} are done right at the beginning to illustrate the method used to derive these formulas.
引用
收藏
页码:929 / 940
页数:11
相关论文
共 50 条