Three-dimensional simulations of instabilities in a Marangoni-driven, low Prandtl number liquid bridge with magnetic stabilization to verify linear stability theory
European Physical Journal Special Topic;
Linear Stability;
Linear Stability Analysis;
Liquid Bridge;
Symmetric Mode;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The Full-Zone model of a liquid bridge encountered in crystal growth is analyzed via linear stability analysis and three-dimensional spectral element simulations, neglecting gravitational forces, for Prandtl number 0.02. The base state is axisymmetric and steady state. Linear stability predicts the character of flow transitions and the value of ReFZ, the thermocapillary Reynolds number, at which instabilities occur. Previous linear stability findings show that application of a steady, axial magnetic field stabilizes the base state. Previous three-dimensional simulations with no magnetic field predict a first transition that agrees well with linear stability theory. However, these simulations also demonstrated that continued time integration at just slightly higher ReFZ leads to what appears to be periodic flow. Closer inspection and comparison with linear stability theory revealed that this apparent periodicity was actually competition between two steady modes with different axial symmetries. Here an axial magnetic field is applied in three-dimensional simulations and it is verified that the magnetic field does have the intended effect of stabilizing the flow and removing modal competition. The azimuthal flow shows excellent agreement with eigenvectors predicted by linear stability theory.
机构:
Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USA
Graf, F
Meiburg, E
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USA
Meiburg, E
Härtel, C
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USA