Eisenstein Series and String Thresholds

被引:0
|
作者
N. A. Obers
B. Pioline
机构
[1] Nordita and Niels Bohr Institute,
[2] Blegdamsvej 17,undefined
[3] 2100 Copenhagen,undefined
[4] Denmark.¶E-mail: obers@nordita.dk,undefined
[5] Centre de Physique Théorique,undefined
[6] Ecole Polytechnique,undefined
[7] Unité mixte CNRS UMR 7644,undefined
[8] 91128 Palaiseau,undefined
[9] France. E-mail: pioline@cpht.polytechnique.fr,undefined
来源
Communications in Mathematical Physics | 2000年 / 209卷
关键词
Invariant Mass; Symmetric Space; Fundamental Domain; Eisenstein Series; Compact Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the relevance of Eisenstein series for representing certain G(ℤ)-invariant string theory amplitudes which receive corrections from BPS states only. G(ℤ) may stand for any of the mapping class, T-duality and U-duality groups Sl(d,(ℤ), SO(d,d,(ℤ) or Ed+1(d+1)((ℤ) respectively. Using G(ℤ)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(ℝ) of non-compact type, with K the maximal compact subgroup of G(ℝ), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4 and R4H4g-4 couplings in toroidal compactifications of M-theory to any dimension D≥ 4 and D≥ 6 respectively.
引用
收藏
页码:275 / 324
页数:49
相关论文
共 50 条
  • [1] Eisenstein series and string thresholds
    Obers, NA
    Pioline, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) : 275 - 324
  • [2] Eisenstein series in string theory
    Obers, NA
    Pioline, B
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (05) : 1215 - 1224
  • [3] Two string theory flavours of generalised Eisenstein series
    Dorigoni D.
    Treilis R.
    Journal of High Energy Physics, 2023 (11)
  • [4] Small representations, string instantons, and Fourier modes of Eisenstein series
    Green, Michael B.
    Miller, Stephen D.
    Vanhove, Pierre
    JOURNAL OF NUMBER THEORY, 2015, 146 : 187 - 309
  • [5] Eisenstein series for higher-rank groups and string theory amplitudes
    Green, Michael B.
    Miller, Stephen D.
    Russo, Jorge G.
    Vanhove, Pierre
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2010, 4 (03) : 551 - 596
  • [6] ON EISENSTEIN SERIES
    SHIMURA, G
    DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) : 417 - 476
  • [7] Eisenstein Series
    Howard, Benjamin
    Yang, Tonghai
    INTERSECTIONS OF HIRZEBRUCH-ZAGIER DIVISORS AND CM CYCLES, 2012, 2041 : 43 - 63
  • [8] Siegel Eisenstein series of degree n and Λ-adic Eisenstein series
    Takemori, Sho
    JOURNAL OF NUMBER THEORY, 2015, 149 : 105 - 138
  • [9] Geometric Eisenstein series
    Braverman, A
    Gaitsgory, D
    INVENTIONES MATHEMATICAE, 2002, 150 (02) : 287 - 384
  • [10] ON HERMITIAN EISENSTEIN SERIES
    NAGAOKA, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (04) : 115 - 117