Pivoting of microtubules around the spindle pole accelerates kinetochore capture

被引:0
|
作者
Iana Kalinina
Amitabha Nandi
Petrina Delivani
Mariola R. Chacón
Anna H. Klemm
Damien Ramunno-Johnson
Alexander Krull
Benjamin Lindner
Nenad Pavin
Iva M. Tolić-Nørrelykke
机构
[1] Max Planck Institute of Molecular Cell Biology and Genetics,Department of Physics
[2] Max Planck Institute for the Physics of Complex Systems,undefined
[3] Faculty of Science,undefined
[4] University of Zagreb,undefined
[5] Present address: European Molecular Biology Laboratory,undefined
[6] Meyerhofstrasse 1,undefined
[7] 69117 Heidelberg,undefined
[8] Germany (I.K.); Department of Molecular,undefined
[9] Cellular and Developmental Biology,undefined
[10]  Yale University,undefined
[11]  New Haven,undefined
[12] Connecticut 06520,undefined
[13] USA (A.N.); Bernstein Center for Computational Neuroscience Berlin and Physics Department of Humboldt University Berlin,undefined
[14] 10115 Berlin,undefined
[15] Germany (B.L.),undefined
来源
Nature Cell Biology | 2013年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
To segregate chromosomes, spindle microtubules must attach to chromosomes through kinetochores, in a process involving several types of microtubule behaviour. Tolic-Norrelykke and colleagues find that fission yeast microtubules rapidly rotate around the spindle poles, and mathematical modelling confirms that this random microtubule movement facilitates kinetochore capture.
引用
收藏
页码:82 / 87
页数:5
相关论文
共 50 条
  • [1] Pivoting of microtubules around the spindle pole accelerates kinetochore capture
    Kalinina, Iana
    Nandi, Amitabha
    Delivani, Petrina
    Chacon, Mariola R.
    Klemm, Anna H.
    Ramunno-Johnson, Damien
    Krull, Alexander
    Lindner, Benjamin
    Pavin, Nenad
    Tolic-Norrelykke, Iva M.
    NATURE CELL BIOLOGY, 2013, 15 (01) : 82 - U178
  • [2] Microtubules Search for Lost Kinetochores by Pivoting Around the Spindle Pole
    Ramunno-Johnson, Damien
    Kalinina, Iana
    Nandi, Amitabha
    Krull, Alexander
    Lindner, Benjamin
    Pavin, Nenad
    Tolic-Norrelykke, Iva M.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 702A - 702A
  • [3] Microtubules search for lost kinetochores by pivoting around the spindle pole.
    Ramunno-Johnson, D.
    Kalinina, I.
    Nandi, A.
    Krull, A.
    Lindner, B.
    Pavin, N.
    Tolic-Norrelykke, I.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [4] Molecular mechanisms of kinetochore capture by spindle microtubules
    Tanaka, K
    Mukae, N
    Dewar, H
    van Breugel, M
    James, EK
    Prescott, AR
    Antony, C
    Tanaka, TU
    NATURE, 2005, 434 (7036) : 987 - 994
  • [5] Molecular mechanisms of kinetochore capture by spindle microtubules
    Kozo Tanaka
    Naomi Mukae
    Hilary Dewar
    Mark van Breugel
    Euan K. James
    Alan R. Prescott
    Claude Antony
    Tomoyuki U. Tanaka
    Nature, 2005, 434 : 987 - 994
  • [6] Pivoting of microtubules facilitates formation of microtubule bundles and kinetochore capture
    Pavin, N.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S92 - S92
  • [7] Comparison of mechanisms of kinetochore capture with varying number of spindle microtubules
    Nayak, Indrani
    Das, Dibyendu
    Nandi, Amitabha
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [8] Rings around kinetochore microtubules in yeast
    McIntosh, JR
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (03) : 210 - 212
  • [9] Rings around kinetochore microtubules in yeast
    J Richard McIntosh
    Nature Structural & Molecular Biology, 2005, 12 : 210 - 212
  • [10] Maloriented bivalents have metaphase positions at the spindle equator with more kinetochore microtubules to one pole than to the other
    LaFountain, JR
    Oldenbourg, R
    MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (12) : 5346 - 5355