On generalized Riesz type potential with Lorentz distance

被引:0
|
作者
M. Z. Sarikaya
H. Yildirim
Ö. Akin
机构
[1] TOBB Economy and Technology University,Faculty of Sciences and Arts, Department of Mathematics
[2] Kocatepe University,Department of Mathematics, Faculty of Science and Arts
关键词
Generalized Shift operator; Schwartz space; Diamond Operator Fourier Bessel Transform; Bessel Operator; Lorentz distance; 44A15; 31B10; 46F10;
D O I
10.1134/S1995080208010083
中图分类号
学科分类号
摘要
In this article, we defined the Bessel ultra-hyperbolic operator iterated k—times and is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \square _B^k = \left[ {B_{x1} + B_{x2} + \cdots + B_{x_p } - B_{x_{p + 1} } - \ldots - B_{x_{p + q} } } \right]^k $$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p + q = n, B_{x_i } = \frac{{\partial ^2 }} {{\partial x_i^2 }} + \frac{{2v_i }} {{x_i }}\frac{\partial } {{\partial x_i }}, 2v_i = 2\alpha _i + 1,\alpha _i > - \frac{1} {2} [4] $$\end{document}, xi>0, i=1,2, ..., n, k is a nonnegative integer and n is the dimension of the ℝn1. Furthermore we have generated the generalized ultra-hyperbolic Riesz potential with Lorentz distance. This potential is generated by the generalized shift operator for functions in Schwartz spaces.
引用
收藏
页码:32 / 39
页数:7
相关论文
共 50 条
  • [1] On Generalized Riesz Type Potential with Lorentz Distance
    Sarikaya, M. Z.
    Yildirim, H.
    Akin, O.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2008, 29 (01) : 32 - 39
  • [2] Riesz type potential operators in generalized grand Morrey spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (01) : 43 - 64
  • [3] BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY TYPE SPACES
    Burenkov, V., I
    Senouci, M. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (04):
  • [4] ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES
    Burenkov V.I.
    Senouci M.A.
    [J]. Journal of Mathematical Sciences, 2022, 266 (5) : 765 - 793
  • [5] The Riesz potential in generalized Orlicz spaces
    Harjulehto, Petteri
    Hasto, Peter
    [J]. FORUM MATHEMATICUM, 2017, 29 (01) : 229 - 244
  • [6] Generalized Riesz Potential Spaces and their Characterization via Wavelet-Type Transform
    Aliev, Ilham A.
    Saglik, Esra
    [J]. FILOMAT, 2016, 30 (10) : 2809 - 2823
  • [7] Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces
    Shi, Yanlong
    Tao, Xiangxing
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (04) : 635 - 662
  • [8] Two-type estimates for the boundedness of generalized Riesz potential operator in the generalized weighted local Morrey spaces
    Kucukaslan, Abdulhamit
    [J]. ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2021, 14 (04): : 111 - 124
  • [9] Riesz potential in the local Morrey-Lorentz spaces and some applications
    Guliyev, Vagif S.
    Kucukaslan, Abdulhamit
    Aykol, Canay
    Serbetci, Ayhan
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 557 - 567
  • [10] The (p, q, l) -properties of a generalized Riesz potential
    Cinar, I
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (03) : 751 - 755