Multimodal sparse support tensor machine for multiple classification learning

被引:0
|
作者
Shuangyue Wang
Xinrong Zhang
Ziyan Luo
Yingnan Wang
机构
[1] Beijing Jiaotong University,School of Mathematics and Statistics
[2] Southwest Forestry University,School of Mathematics and Science
关键词
Multimodal data; Support tensor machine; Sparsity; Newton method; Multiple classification;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops new multiple classification approaches in a direct manner for high-dimensional multimodal data. Firstly, we construct multiple hyperplanes via the tensor multimodal product and design a novel piecewise quadratic loss function ‘ℓcC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{cC}$$\end{document}’ in the soft-margin scheme to propose the multimodal support tensor machine model (MSTM). Furthermore, to alleviate the overfitting phenomenon in small-size sampling instances, we construct a multimodal sparsity constrained support tensor machine model (MSSTM) by subtly imposing the sparsity constraint on the decision variables of the dual problem. In addition, the Newton method and subspace Newton method are employed to solve the MSTM and MSSTM models from the dual perspective, taking advantage of the differentiation properties of ‘ℓcC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{cC}$$\end{document}’ and the hard-thresholding operator, respectively. Numerical experiments on four image datasets demonstrate the efficiency of the proposed methods in terms of classification accuracy and training time for multiple classification.
引用
收藏
页码:1361 / 1373
页数:12
相关论文
共 50 条
  • [1] Multimodal sparse support tensor machine for multiple classification learning
    Wang, Shuangyue
    Zhang, Xinrong
    Luo, Ziyan
    Wang, Yingnan
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (04) : 1361 - 1373
  • [2] Hyperspectral image classification by sparse tensor based support tensor machine
    Gong, Xueliang
    Li, Yu
    Zhao, Quanhua
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [3] Coupled support tensor machine classification for multimodal neuroimaging data
    Li, Peide
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    Maiti, Tapabrata
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 797 - 818
  • [4] Sparse Deep Tensor Extreme Learning Machine for Pattern Classification
    Zhao, Jin
    Jiao, Licheng
    [J]. IEEE ACCESS, 2019, 7 : 119181 - 119191
  • [5] Support Multimode Tensor Machine for Multiple Classification on Industrial Big Data
    Ma, Zhenchao
    Yang, Laurence Tianruo
    Zhang, Qingchen
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3382 - 3390
  • [6] Sparse Support Tensor Machine with Scaled Kernel Functions
    Wang, Shuangyue
    Luo, Ziyan
    [J]. MATHEMATICS, 2023, 11 (13)
  • [7] Sparse Extreme Learning Machine for Classification
    Bai, Zuo
    Huang, Guang-Bin
    Wang, Danwei
    Wang, Han
    Westover, M. Brandon
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (10) : 1858 - 1870
  • [8] Twin Bounded Support Tensor Machine for Classification
    Shi, Haifa
    Zhao, Xinbin
    Zhen, Ling
    Jing, Ling
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2016, 30 (01)
  • [9] Sparse learning for support vector classification
    Huang, Kaizhu
    Zheng, Danian
    Sun, Jun
    Hotta, Yoshinobu
    Fujimoto, Katsuhito
    Naoi, Satoshi
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1944 - 1951
  • [10] MULTIMODAL SPARSE BAYESIAN DICTIONARY LEARNING APPLIED TO MULTIMODAL DATA CLASSIFICATION
    Fedorov, Igor
    Rao, Bhaskar D.
    Nguyen, Truong Q.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2237 - 2241