Order and chaos around resonant motion in librating spring–mass–spherical pendulum

被引:0
|
作者
Aritra Anurag
Sagar Das
机构
[1] Indian Institute of Technology,Department of Physics
来源
Nonlinear Dynamics | 2021年 / 104卷
关键词
Hamiltonian systems; Spring–mass–pendulum; Chaotic systems; Perturbation theory; Order–chaos–order transition; Fast Lyapunov indicator;
D O I
暂无
中图分类号
学科分类号
摘要
Using both analytical and numerical techniques, we investigate the 3-degree-of-freedom, autonomous, autoparametric, Hamiltonian spring–mass–pendulum system in libration and reveal the order–chaos–order transition with the change in the ratio of frequencies of corresponding independent normal modes. In the process, we also present an integrable limit of it and find all the three independent constants of motion. Furthermore, we study the possibility of the precession of the swing plane of the constituent spherical pendulum and the related energy exchanges between the modes at the autoparametric resonance. We use the method of the fast Lyapunov indicators to characterise and distinguish the order and the chaos in the system.
引用
收藏
页码:3407 / 3424
页数:17
相关论文
共 9 条
  • [1] Order and chaos around resonant motion in librating spring-mass-spherical pendulum
    Anurag
    Das, Aritra
    Chakraborty, Sagar
    [J]. NONLINEAR DYNAMICS, 2021, 104 (04) : 3407 - 3424
  • [2] Chaos and order in librating quantum planar elastic pendulum
    Anurag
    Mondal, Basudeb
    Shah, Tirth
    Chakraborty, Sagar
    [J]. NONLINEAR DYNAMICS, 2021, 103 (03) : 2841 - 2853
  • [3] Chaos and order in librating quantum planar elastic pendulum
    Basudeb Anurag
    Tirth Mondal
    Sagar Shah
    [J]. Nonlinear Dynamics, 2021, 103 : 2841 - 2853
  • [4] The order-chaos-order sequence in the spring pendulum
    vanderWeele, JP
    deKleine, E
    [J]. PHYSICA A, 1996, 228 (1-4): : 245 - 272
  • [5] An improved calculation of the mass for the resonant spring pendulum
    Christensen, J
    [J]. AMERICAN JOURNAL OF PHYSICS, 2004, 72 (06) : 818 - 828
  • [6] DIMENSION ESTIMATE OF THE GLOBAL ATTRACTOR FOR RESONANT MOTION OF A SPHERICAL PENDULUM
    OHNISHI, I
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1992, 68 (09) : 302 - 306
  • [7] Demonstration to Show Resonant Oscillations of a Simple Pendulum Coupled to a Mass-Spring Oscillator
    Baker, Blane
    Park, Sungjune
    [J]. PHYSICS TEACHER, 2021, 59 (03): : 166 - 167
  • [8] Third-order secular Solution of the variational equations of motion of a satellite in orbit around a non-spherical planet
    M. K. Ammar
    S. M. El Shaboury
    M. R. Amin
    [J]. Astrophysics and Space Science, 2012, 340 : 43 - 61
  • [9] Third-order secular Solution of the variational equations of motion of a satellite in orbit around a non-spherical planet
    Ammar, M. K.
    El Shaboury, S. M.
    Amin, M. R.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2012, 340 (01) : 43 - 61