Cohomological Hall algebras and affine quantum groups

被引:0
|
作者
Yaping Yang
Gufang Zhao
机构
[1] The University of Melbourne,School of Mathematics and Statistics
[2] University of Massachusetts,Department of Mathematics and Statistics
来源
Selecta Mathematica | 2018年 / 24卷
关键词
Quantum group; Shuffle algebra; Hall algebra; Yangian; Drinfeld double; Primary 17B37; Secondary 14F43; 55N22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the preprojective cohomological Hall algebra (CoHA) introduced by the authors in Yang and Zhao (The cohomological Hall algebra of a preprojective algebra. arXiv: 1407.7994v5, 2015) for any quiver Q and any one-parameter formal group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}$$\end{document}. In this paper, we construct a comultiplication on the CoHA, making it a bialgebra. We also construct the Drinfeld double of the CoHA. The Drinfeld double is a quantum affine algebra of the Lie algebra gQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}_Q$$\end{document} associated to Q, whose quantization comes from the formal group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}$$\end{document}. We prove, when the group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb G}$$\end{document} is the additive group, the Drinfeld double of the CoHA is isomorphic to the Yangian.
引用
收藏
页码:1093 / 1119
页数:26
相关论文
共 50 条
  • [1] Cohomological Hall algebras and affine quantum groups
    Yang, Yaping
    Zhao, Gufang
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02): : 1093 - 1119
  • [2] HALL ALGEBRAS AND QUANTUM GROUPS
    RINGEL, CM
    [J]. INVENTIONES MATHEMATICAE, 1990, 101 (03) : 583 - 592
  • [3] On two cohomological Hall algebras
    Yang, Yaping
    Zhao, Gufang
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) : 1581 - 1607
  • [4] HALL ALGEBRAS, HEREDITARY ALGEBRAS AND QUANTUM GROUPS
    GREEN, JA
    [J]. INVENTIONES MATHEMATICAE, 1995, 120 (02) : 361 - 377
  • [5] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Rapcak, Miroslav
    Soibelman, Yan
    Yang, Yaping
    Zhao, Gufang
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 1803 - 1873
  • [6] Framed cohomological Hall algebras and cohomological stable envelopes
    Tommaso Maria Botta
    [J]. Letters in Mathematical Physics, 113
  • [7] Cohomological Hall Algebras, Vertex Algebras and Instantons
    Miroslav Rapčák
    Yan Soibelman
    Yaping Yang
    Gufang Zhao
    [J]. Communications in Mathematical Physics, 2020, 376 : 1803 - 1873
  • [8] Framed cohomological Hall algebras and cohomological stable envelopes
    Botta, Tommaso Maria
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (05)
  • [9] AFFINE LIE-ALGEBRAS AND QUANTUM GROUPS
    KAZHDAN, D
    LUSZTIG, G
    [J]. DUKE MATHEMATICAL JOURNAL, 1991, 62 (03) : A21 - A29
  • [10] Cohomological Hall algebras and character varieties
    Davison, Ben
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (07)