Diffusion Equation;
Asymptotic Property;
Neumann Condition;
Side Boundary;
D O I:
10.1023/A:1022296627332
中图分类号:
学科分类号:
摘要:
In this work the authors study the conditions for the existence of diffusion equations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\partial _t u\left( {x,t} \right) = 3DA\left( {x,\partial x} \right)u\left( {x,t} \right) + f\left( u \right),A\left( {x,\partial x} \right) \equiv \sum\limits_{i,j = 3D1}^n {\partial _{xj} \left( {a_{ij} \left( x \right)\partial _{xi} } \right)}$$
\end{document} in the cylinder Q = 3DΩ × \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{R}$$
\end{document}+, Ω ⊂ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{R}$$
\end{document}n, satisfying the homogeneous Dirichlet or Neumann conditions on the side boundary of the cylinder Q and decreasing with respect to t as a power for t → ∞.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Ishige, Kazuhiro
Kawakami, Tatsuki
论文数: 0引用数: 0
h-index: 0
机构:
Ryukoku Univ, Fac Adv Sci & Technol, Appl Math & Informat Course, 1-5 Yokotani, Otsu, Shiga 5202194, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Institute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Str., 3, KyivInstitute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Str., 3, Kyiv
Bel’skii D.V.
Pelyukh G.P.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Str., 3, KyivInstitute of Mathematics, Ukrainian National Academy of Sciences, Tereshchenkivs’ka Str., 3, Kyiv